Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow\int^{25-x^2\ge0}_{25-x^2\ne9}\Leftrightarrow\int^{x^2\le25}_{x^2\ne16}\Leftrightarrow x^2\in\left\{0;1;4;9;25\right\}\Rightarrow x\in\left\{-5;-3;-2;-1;0;1;2;3;5\right\}\)
S có Số phần tử là : 7
ĐỂ bt có nghĩa khi
3 khác \(\sqrt{25-x^2}\) và \(25-x^2\ge0\)
<=> x khác +- 4 và - 5 <= x <= 5
Vì x nguyên => x thuộc { -5 ; -3 ; -2 ; -1 ; 0 ; 1 ; 2 ; 3 ; 5 }
Vậy S có 9 phần tử
1/ \(\frac{3}{2}x^2+y^2+z^2+yz=1\Leftrightarrow3x^2+2y^2+2z^2+2yz=2\)
\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2-2xy+y^2\right)+\left(x^2-2zx+z^2\right)=2\)
\(\Leftrightarrow\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2=2\)
\(\Rightarrow-\sqrt{2}\le x+y+z\le\sqrt{2}\)
Suy ra MIN A = \(-\sqrt{2}\)khi \(x=y=z=-\frac{\sqrt{2}}{3}\)
a) \(P\)\(=\sqrt{x}-2+3-3\sqrt{x}=1-2\sqrt{x}\)
b) \(Q=\frac{2\left(1-2\sqrt{x}\right)}{1-1+2\sqrt{x}}=\frac{1-2\sqrt{x}}{\sqrt{x}}=\frac{1}{\sqrt{x}}-2\)
vậy x=1 thỏa mãn đề bài.
Trả lời :.............................
x=1...........................
Hk tốt..............................
Hưng Trần Minh mình bộp chộp không đọc kĩ đề, bạn thông cảm ^-^
ĐKXĐ:\(x\ge0;x\ne1;x\in Z\)
\(P=\frac{\sqrt{x}-4}{\sqrt{x}-1}=\frac{\sqrt{x}-1-3}{\sqrt{x}-1}=1-\frac{3}{\sqrt{x}-1}\)
Để \(P\in Z\) thì \(\frac{3}{\sqrt{x}-1}\in Z\Rightarrow\sqrt{x}-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
=> Theo mình ra 4 là đúng