Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B.
Phương pháp : Ứng dụng tích phân để tính diện tích hình phẳng.
Cách giải:
Đáp án D
Phương pháp giải: Công thức tính diện tích hình phẳng giới hạn bởi hai đồ thị hàm số
Lời giải:
Diện tích S của hình phẳng D được tính theo công thức là S = ∫ a b f x − g x d x
Đáp án C
Phương pháp: Dựa vào công thức ứng dụng tích phân để tính thể tích vật tròn xoay.
Cách giải: V =
Ta có
S = ∫ - 1 2 f x d x = ∫ - 1 1 f x d x + ∫ 1 2 f x d x = ∫ - 1 1 f x d x + ∫ - 1 1 - f ( x ) d x = a - b .
Chọn đáp án B.
Ta có công thức tính thể tích khối tròn xoay quay đồ thị hàm số y = f ( x ) quanh trục hoành, giới hạn bởi 2 đường thẳng x = a, x = b ( a > b ) là.
V = π ∫ a b f 2 x dx
Đáp án cần chọn là A
Đáp án D
Dựa vào đồ thị hàm số y = f ' ( x ) ⇒ f ' x = 3 x 2 - 1
Khi đó f x = ∫ f ' x d x = x 3 - 3 x + C .
Điều kiện đồ thị hàm số f(x) tiếp xúc với đường thẳng y = 4 là:
f x = 4 f x = 0 ⇒ x 3 - 3 x + C = 4 3 x 2 - 1 = 0 ⇔ x = - 1 C = 2 (Do x < 0 suy ra f x = x 3 - 3 x + 2 C
Cho C ∩ O x ⇒ hoành độ các giao điểm là x = -2,x = 1
Khi đó S = ∫ - 2 1 x 3 - 3 x + 2 d x = 27 4 .
Đáp án C.