Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử tứ giác ABCD có : AB=a, BC=b, CD=c,DA=d
Gọi O là giao điểm của AC và BD ta có :
AC+BD=AO+OB+OC+OD>AB+CD=a+c
Tương tự : AC+BD>b+d
Suy ra : 2(AC+BD)>a+b+c+d=AC+BD=a+b+c+d2
Vậy tổng hai đường chéo lớn hơn nửa chu vi của tứ giác
Theo bất đẳng thức tam giác ta có :
AC<a+b;AC<c+d
BD<b+c;BD<a+d
=2(AC+BD)<2(a+b+c+d)
=AC+BD<a+b+c+d
Vậytổng hai đường chéo nhỏ hơn chu vi tứ giác.
Mong ban k cho minh nha ♥♥♥
Theo câu 1 thì AC<p và BD < p => AC + BD < 2p tổng 2 đường chéo nhỏ hơn chu vi (đpcm)
giao của AC và BD là O.
trong tam giác OAB có OB + OA > AB , trong tam giác OBC có OB + OC > BC
trong tam giác OADcó OD + OA > AD , trong tam giác ODC có OD + OC > DC
cổng 4 bất đẳng thức cùng chiề này lại ta có:
2.OB + 2.OD + 2.OA + 2.OC > AB + BC + CD + DA
<=> 2 BD + 2 AC > 2p <=> BD + AC > p tổng 2 đường chéo lớn hơn nửa chu vi (đpcm)
*Theo câu 1 thì AC<p và BD < p => AC + BD < 2p tổng 2 đường chéo nhỏ hơn chu vi (đpcm)
* giao của AC và BD là O.
trong tam giác OAB có OB + OA > AB , trong tam giác OBC có OB + OC > BC
trong tam giác OADcó OD + OA > AD , trong tam giác ODC có OD + OC > DC
cổng 4 bất đẳng thức cùng chiề này lại ta có:
2.OB + 2.OD + 2.OA + 2.OC > AB + BC + CD + DA
<=> 2 BD + 2 AC > 2p <=> BD + AC > p tổng 2 đường chéo lớn hơn nửa chu vi (đpcm)
A B C D O
Giả sử tứ giác đó là ABCD , hai đường chéo AC và BD cắt nhau tại O
- Theo bất đẳng thức tam giác, ta có : \(AO+OB>AB\) ; \(OB+OC>BC\) ; \(OC+OD>CD\) ; \(OD+OA>AD\)
\(\Rightarrow OA+OB+OB+OC+OC+OD+OD+OA>AB+BC+CD+DA\)
\(\Leftrightarrow2\left(AC+BD\right)>AB+BC+CD+AD\Leftrightarrow AC+BD>\frac{AB+BC+CD+AD}{2}\)
- Theo bất đẳng thức tam giác : \(AB+BC>AC\) ; \(AD+DC>AC\); \(AB+AD>BD\) ;
\(BC+CD>BD\)
\(\Rightarrow AB+BC+AD+DC+AB+AD+BC+CD>AC+AC+BD+BD\)
\(\Leftrightarrow2\left(AB+BC+CD+DA\right)>2\left(AC+BD\right)\Leftrightarrow AB+BC+CD+DA>AC+BD\)
Gọi O là giao điểm của AC và BD.Ta có :
OA + OB > AB , OB + OC > AC ; OC + CD > CD , OD + OA > AD.Cộng từng vế các bất đẳng thức trên rồi chia cho 2 ,ta được \(AC+BD>\frac{AB+BC+CD+AD}{2}\)
Vậy tổng hai đường chéo lớn hơn nửa chu vi
Kết hợp : AC + BD < AB + BC + CD + DA
Vậy \(\frac{AB+BC+CD+AD}{2}< AC+BD< AB+BC< CD+DA\)
Đặt độ dài a = AB, b = BC, c = CD, d = AD
Gọi O là giao điểm 2 đường chéo AC và BD.
* Trong ∆ OAB, ta có:
OA + OB > a (bất đẳng thức tam giác) (1)
* Trong ∆ OCD, ta có:
OC + OD > c (bất đẳng thức tam giác) (2)
Từ (1) và (2) suy ra:
OA + OB + OC + OD > a + c hay AC + BD > a + c (*)
* Trong ∆ ΔOAD, ta có: OA + OD > d (bất đẳng thức tam giác) (3)
* Trong ∆ OBC, ta có: OB + OC > b (bất đẳng thức tam giác) (4)
Từ (3) và (4) suy ra:
OA + OB + OC + OD > b + d hay AC + BD > b + d (**)
Từ (*) và (**) suy ra: 2(AC + BD) > a + b + c + d
* Trong ∆ ABC, ta có: AC < AB + BC = a + b (bất đẳng thức tam giác)
* Trong ∆ ADC, ta có: AC < AD + DC = c + d (bất đẳng thức tam giác)
Suy ra: 2AC < a + b + c + d
* Trong ∆ ABD, ta có: BD < AB + AD = a + d (bất đẳng thức tam giác)
* Trong ∆ BCD, ta có: BD < BC + CD = b + c (bất đẳng thức tam giác)
Suy ra: 2BD < a + b + c + d
Từ (5) và (6) suy ra: AC + BD < a + b + c + d
CHÚC BẠN HOK TỐT
thui để tui đánh tay zậy