Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D.
Khối nón cụt có thể tích là V = πh 3 R 2 + R . r + r 2 mà h = 3 V = π ⇒ R 2 + R . r + r 2 = 1 (*).
Ta có P = R + 2 r ⇔ R = P - 2 r thay vào (*), ta được P - 2 r 2 + P - 2 r r + r 2 = 1
⇔ P 2 - 4 P r + 4 r 2 + P r - 2 r 2 + r 2 - 1 = 0 ⇔ 3 r 2 - 3 P r + P 2 - 1 = 0 (I).
Vậy phương trình (I) có nghiệm khi và chỉ khi ∆ I = - 3 P 2 - 4 . 3 . P 2 - 1 ≥ 0 ⇔ P ≤ 2 .
Vậy giá trị lớn nhất của P là 2.
Chọn D.
Phương pháp
Công thức tính diện tích xung quanh hình nón có bán kính đáy , R chiều cao h và đường sinh l: S x q = π R l .
Cách giải:
Công thức tính diện tích xung quanh hình nón có bán kính đáy , R chiều cao h và đường sinh l: S x q = π R l .
Chọn đáp án D
Phương pháp
Công thức tính diện tích xung quanh của hình nón là S x q = πr l trong đó r, l lần lượt là bán kính đáy và độ dài đường sinh của hình nón.
Cách giải
Công thức tính diện tích xung quanh của hình nón là S x q = πr l trong đó r, l lần lượt là bán kính đáy và độ dài đường sinh của hình nón.
Chú ý: Hình nón có đường sinh và đường cao khác nhau.