K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét tứ giác BFHD có 

\(\widehat{BFH}\) và \(\widehat{BDH}\) là hai góc đối

\(\widehat{BFH}+\widehat{BDH}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: BFHD là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Xét tứ giác BFEC có 

\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)

\(\widehat{BFC}\) và \(\widehat{BEC}\) cùng nhìn cạnh BC một góc bằng 900

Do đó: BFEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

 

6 tháng 4 2017

a) Xét tứ giác BMNC :

Ta có :\(\widehat{BMC}\)= 90 ( CM là đường cao)

          \(\widehat{CNB}\)= 90 ( BN là đường cao)

           M,N là hai đỉnh liên tiếp cùng nhìn cạnh BC

=> Tứ giác BMNC là tứ giác nội tiếp

Xét tứ giác AMHN :

Ta có : \(\widehat{HMA}\)= 90 ( CM là đường cao )

           \(\widehat{HNA}\)= 90 ( BN là đường cao )

            \(\widehat{HMA}+\widehat{HNA}\)=180 

=> Tứ giác AMHN là tứ giác nội tiếp 

          

   

6 tháng 4 2017

Giúp mình câu b với câu c nữa :((

30 tháng 3 2022
Ai giúp em với😢

a: góc ANH+góc AMH=180 độ

=>AMHN nội tiếp

b: Tham khảo

Tứ giác MCDE nội tiếp nên góc MED = 180 - C (1).

Tứ giác NBDE nội tiếp nên góc NED = 180 - B (2).

Mà góc MEN = 360 - MED - NED (3).

Thay (1), (2) vào (3) được: góc MEN = 360 - (180 - C) - (180 - B) = B +C = 180 - A.

Suy ra MEN + MAN =180. Vậy tứ giác MENA nội tiếp.

=>E thuộc đường tròn ngoại tiếp ΔAMN

a: góc AMH+góc ANH=180 độ

=>AMHN nội tiếp

b: Vì góc BMC=góc BNC=90 độ

nên BMNC nội tiếp

=>góc HMN=góc HBC

mà goc MHN=góc BHC

nên ΔHMN đồng dạng vơi ΔHBC

=>HM/HB=MN/BC

=>HM*BC=HB*MN

c: góc NMH=góc HAC

góc KMH=góc NBC

mà góc HAC=góc NBC

nên góc NMH=góc KMH

=>MH là phân giác của góc NMK(1)

góc MKH=góc ABN

góc NKH=góc ACM

góc ABN=góc ACM

Do đó: góc MKH=góc NKH

=>KH là phân giác của góc MKN(2)

Từ (1), (2) suy ra H là tâm đường tròn nội tiếp ΔKMN