Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác BFHD có
\(\widehat{BFH}\) và \(\widehat{BDH}\) là hai góc đối
\(\widehat{BFH}+\widehat{BDH}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: BFHD là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Xét tứ giác BFEC có
\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)
\(\widehat{BFC}\) và \(\widehat{BEC}\) cùng nhìn cạnh BC một góc bằng 900
Do đó: BFEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a) Xét tứ giác BMNC :
Ta có :\(\widehat{BMC}\)= 90 ( CM là đường cao)
\(\widehat{CNB}\)= 90 ( BN là đường cao)
M,N là hai đỉnh liên tiếp cùng nhìn cạnh BC
=> Tứ giác BMNC là tứ giác nội tiếp
Xét tứ giác AMHN :
Ta có : \(\widehat{HMA}\)= 90 ( CM là đường cao )
\(\widehat{HNA}\)= 90 ( BN là đường cao )
\(\widehat{HMA}+\widehat{HNA}\)=180
=> Tứ giác AMHN là tứ giác nội tiếp
a: góc ANH+góc AMH=180 độ
=>AMHN nội tiếp
b: Tham khảo
Tứ giác MCDE nội tiếp nên góc MED = 180 - C (1).
Tứ giác NBDE nội tiếp nên góc NED = 180 - B (2).
Mà góc MEN = 360 - MED - NED (3).
Thay (1), (2) vào (3) được: góc MEN = 360 - (180 - C) - (180 - B) = B +C = 180 - A.
Suy ra MEN + MAN =180. Vậy tứ giác MENA nội tiếp.
=>E thuộc đường tròn ngoại tiếp ΔAMN
a: góc AMH+góc ANH=180 độ
=>AMHN nội tiếp
b: Vì góc BMC=góc BNC=90 độ
nên BMNC nội tiếp
=>góc HMN=góc HBC
mà goc MHN=góc BHC
nên ΔHMN đồng dạng vơi ΔHBC
=>HM/HB=MN/BC
=>HM*BC=HB*MN
c: góc NMH=góc HAC
góc KMH=góc NBC
mà góc HAC=góc NBC
nên góc NMH=góc KMH
=>MH là phân giác của góc NMK(1)
góc MKH=góc ABN
góc NKH=góc ACM
góc ABN=góc ACM
Do đó: góc MKH=góc NKH
=>KH là phân giác của góc MKN(2)
Từ (1), (2) suy ra H là tâm đường tròn nội tiếp ΔKMN