K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2017

Gọi G là trọng tâm tam giác ABC. Trên tia AG lấy G' sao cho G là trung điểm AG':

a)Chứng minh BG'=CG

b)Đường trung trực của cạnh BC cắt CA,CG và BG' lần lượt tại I,J,K. Chứng minh BK=CJ

c)Chứng minh góc ICJ= góc IBJ

a: Gọi M là trung điểm của BC

Xét ΔABC có G là trọng tâm

nên AG=2GM

=>GG'=2GM

hay M là trung điểm của GG'

Xét tứ giác BGCG' có

M là trung điểm của BC

M là trung điểm của GG'

Do đó: BGCG' là hình bình hành

SUy ra: BG'=CG

b: Xét ΔJMC vuông tại M và ΔKMB vuông tại M có

MC=MB

góc JCM=góc KBM

Do đo: ΔJMC=ΔKMB

Suy ra: BK=CJ

c: Ta có: I nằm trên đường trung trực của BC

nên IB=IC

a: Xét tứ giác BGCH có 

M là trung điểm của GH

M là trung điểm của BC

Do đó; BGCH là hình bình hành

SUy ra: BG//CH

b: Xét ΔBMK vuông tại M và ΔCMJ vuông tại M có

MB=MC

\(\widehat{MBK}=\widehat{MCJ}\)

Do đó: ΔBMK=ΔCMJ

Suy ra: BK=CJ

20 tháng 7 2017

Làm tắt luôn cho nhanh này=,=
a,Gọi D là trug điểm BC
Tam giác BDG'=tam giác CDG(c.g.c)-->BG'=GC

b,Tam giác vuông DBK=tam giác vuông DIC(g.c.g)-->BK=JC
c,BI=IC(I thuộc trung trục BC)
tương tự JC=JB\Rightarrow góc IBJ=góc ICJ(bằng hiệu các góc bằng nhau)

20 tháng 7 2017

Làm tắt luôn cho nhanh này=,=
a,Gọi D là trug điểm BC
Tam giác BDG'=tam giác CDG(c.g.c)-->BG'=GC

b,Tam giác vuông DBK=tam giác vuông DIC(g.c.g)-->BK=JC
c,BI=IC(I thuộc trung trục BC)
tương tự JC=JB\Rightarrow góc IBJ=góc ICJ(bằng hiệu các góc bằng nhau)

5 tháng 5 2017

Có điểm C' ?

5 tháng 5 2017

Hình như là điểm C đó cậu.Chắc mình gõ nhầm

8 tháng 8 2023

A B C H M O E I G K

a/

O là giao 3 đường trung trực nên O là tâm đường tròn ngoại tiếp tg ABC

Nối AO cắt đường trong (O) tại E ta có

\(\widehat{ABE}=90^o\) (Góc nội tiếp chắn nửa đường tròn)

\(\Rightarrow BE\perp AB\)

H là trực tâm tg ABC \(\Rightarrow CH\perp AB\)

=> BE//CH (1)

Ta có

\(\widehat{ACE}=90^o\) (Góc nội tiếp chắn nửa đường tròn)

\(\Rightarrow CE\perp AC\)

H là trực tâm tg ABC \(\Rightarrow BH\perp AC\)

=> CE//BH (2)

Từ (1) và (2) => BHCE là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

Do trong hbh hai đường chéo cắt nhau tại trung điểm mỗi đường mà G là trọng tâm tg ABC => M là trung điểm BC => M cũng là trung điểm của HE => MH = ME

Xét tg AHE có

MH=ME (cmt)

OA=OE

=> OM là đường trung bình của tg AHE \(\Rightarrow OM=\dfrac{1}{2}AH\) 

b/ 

Ta có M là trung điểm của BC (cmt) => OM là đường trung trực của BC \(OM\perp BC\)

\(AH\perp BC\)

=> OM//AH 

Xét tg AGH có

IA=IG (gt)

KH=KG (gt)

=> IK là đường trung bình của tg AGK => IK//AH mà OM//AH (cmt)

=> IK//OM \(\Rightarrow\widehat{GIK}=\widehat{GMO}\) (góc so le trong) (4)

IK là đường trung bình của tg AGH \(\Rightarrow IK=\dfrac{1}{2}AH\) mà \(OM=\dfrac{1}{2}AH\) (cmt) => IK = OM (5)

G là trong tâm tg ABC => \(GM=\dfrac{1}{2}AG\) mà \(IG=\dfrac{1}{2}AG\)

=> IG=GM (6)

Từ (4) (5) (5) => tg IGK = tg MGO (c.g.c)

c/

Nối H với O cắt AM tại G' Xét tg AHE

MH=ME (cmt) => AM là trung tuyến của tg AHE

OA=OE => HO là trung tuyến của tg AHE

=> G' là trọng tâm của tg AHE \(\Rightarrow G'M=\dfrac{1}{3}AM\)

Mà G là trọng tâm của tg ABC \(\Rightarrow GM=\dfrac{1}{3}AM\)

\(\Rightarrow G'\equiv G\) => H; G; O thẳng hàng

d/

Do G là trọng tâm của tg AHE => GH=2GO