Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẽ đường cao AH
\(\Rightarrow\hept{\begin{cases}sinB=\frac{AH}{c}\\sinC=\frac{AH}{b}\end{cases}}\)
\(\Rightarrow AH=c.sinB=b.sinC\)
\(\Rightarrow\frac{b}{sinB}=\frac{c}{sinC}\)
Tương tự ta cũng có
\(\frac{b}{sinB}=\frac{a}{sinA}\)
\(\Rightarrow\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)
Ta có:
\(\frac{a}{sinA}=\frac{a}{\frac{h_b}{c}}=\frac{ac}{h_b}=\frac{ac}{\frac{2S}{b}}=\frac{abc}{S}\left(1\right)\)
Tương tự ta cũng có:
\(\hept{\begin{cases}\frac{b}{sinB}=\frac{abc}{2S}\left(2\right)\\\frac{c}{sinC}=\frac{abc}{2S}\left(3\right)\end{cases}}\)
Từ (1), (2), (3) \(\Rightarrow\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)
A B C H K
Từ A kẻ đường cao AH, H thuộc BC. Từ B kẻ đường cao BK, K thuộc AC
Ta có: \(\sin A=\frac{BK}{AB};\sin B=\frac{AH}{AB};\sin C=\frac{AH}{AC}\)
\(\Rightarrow\frac{AB}{\sin C}=\frac{AB}{\frac{AH}{AC}}=\frac{AB.AC}{AH}\)
\(\Rightarrow\frac{AC}{\sin B}=\frac{AC}{\frac{AH}{AB}}=\frac{AB.AC}{AH}\)
\(\Rightarrow\frac{c}{\sin C}=\frac{b}{\sin B}1\)
Lại có:
\(BK=\sin C.BC\Rightarrow\frac{BC}{\sin A}=\frac{BC}{\frac{BK}{AB}}=\frac{BC.AB}{BK}=\frac{AB.BC}{\sin C.BC}=\frac{AB}{\sin C}\)
\(\Rightarrow\frac{a}{\sin A}=\frac{c}{\sin C}2\)
Từ 1 và 2, ta có:
\(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\)
\(\RightarrowĐPCM\)
Do mình chưa học lớp 9, nên không thể giải bài của bạn. Mình có tìm trên mạng và đã tìm được lời giải này cho bạn. Thực mình không hiểu đâu, mong bạn thông cảm.
Nguồn : http://diendantoanhoc.net/topic/81625-sinfraca2leq-fraca2sqrtbc/
Mình sử dụng công thức \(S=\frac{AB.AC.Sin_A}{2}.\).
Vẽ tia phân giác AD của góc A.Đặt \(l=AD\)
\(S_{ABC}=S_{ABD}+S_{ACD}\)
\(=\frac{cl.Sin_{\frac{A}{2}}}{2}+\frac{bl.Sin_{\frac{A}{2}}}{2}\)
\(=\frac{l.Sin_{\frac{A}{2}}\left(b+c\right)}{2}\)
Mặt khác \(S_{ABC}\le\frac{al}{2}\)
\(\Leftrightarrow Sin_{\frac{A}{2}}\le\frac{a}{b+c}\left(\le\frac{a}{2\sqrt{bc}}\right)\) :)
minh biet lam cau b)
A B C D N M
ke phan giac AD , BM vuong goc AD , CN vuong goc AD
sin \(\frac{A}{2}\) =\(\frac{BM}{AB}=\frac{CN}{AC}=\frac{BM+CN}{AB+AC}\)
ma BM\(\le BD,CN\le CD\Rightarrow BM+CN\le BC\)
=> sin \(\frac{A}{2}\le\frac{BC}{AB+AC}\le\frac{a}{b+c}\)
dau = xay ra <=> AD vuong goc BC => AD la duong phan giac ,la duong cao => tam giac ABC can tai A => AB=AC => b=c
tương tự sin \(\frac{B}{2}\le\frac{b}{a+c};sin\frac{C}{2}\le\frac{c}{a+b}\)
=>\(sin\frac{A}{2}\cdot sin\frac{B}{2}\cdot sin\frac{C}{2}\le\frac{a\cdot b\cdot c}{\left(b+c\right)\left(c+a\right)\left(a+b\right)}\)
ap dung cosi cjo 2 so duong b+c\(\ge2\sqrt{bc};c+a\ge2\sqrt{ac};a+b\ge2\sqrt{ab}\)
=> \(\left(b+c\right)\left(c+a\right)\left(a+b\right)\ge8abc\)
\(\Rightarrow sin\frac{A}{2}\cdot sin\frac{B}{2}\cdot sin\frac{C}{2}\le\frac{abc}{8abc}=\frac{1}{8}\)
dau = xay ra <=> a=b=c hay tam giac ABC deu
Kẻ đg cao BH
a) + \(sinA=\frac{BH}{AB}=\frac{BH}{c}\)
+ \(S_{ABC}=\frac{1}{2}BH\cdot AC=\frac{BH\cdot AC\cdot AB}{2AB}\)
\(=\frac{bc\cdot sinA}{2}\)
b) + \(sinC=\frac{BH}{BC}=\frac{BH}{a}\)
\(\Rightarrow\frac{sinA}{sinC}=\frac{\frac{BH}{c}}{\frac{BH}{a}}=\frac{a}{c}\Rightarrow\frac{a}{sinA}=\frac{c}{sinC}\)
+ Tương tự : \(\frac{a}{b}=\frac{sinA}{sinB}\Rightarrow\frac{a}{sinA}=\frac{b}{sinB}\)
Do đó: \(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)