K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2017

a) theo hệ thức về cạnh và đường cao trong tam giác vuông có:

AH^2=BH*HC

hay AH^2=4*9

AH^2=36

=>AH=6cm

ADHE có gócD=gócA=gócE=90độ

=>ADHE là hình chữ nhật

=>AH=DE=6cm (2 đường chéo của hcn)

bn viết tiếng việt đi mik đọc ko có hiểu

1 tháng 8 2021

( Làm tắt bạn tự hiểu nhé )

Gọi O là giao diểm của MK và IQ 

+) Chứng minh: IMQK là hình chữ nhật:

IM là đường trung bình tam giác AHB

=> IM // HB (1) 

QK là đường trung bình tam giác CBH

=> QK// HB (2) 

Từ (1) và (2) => IM// QK 

=>  IMQK là hình bình hành 

Ta có: \(\hept{\begin{cases}KQ\perp AC\left(KQ//BE;BE\perp AC\right)\\MQ//AC\end{cases}}\Rightarrow KQ\perp MQ\)

=> IMQK là hình  chữ nhật 

=> IQ cắt MK tại trung điểm mỗi đường  và IQ=MK

Mà O là giao điểm của IQ và MK

=> OI=OM=OK=OQ     (3) 

CMTT: MNKL là hình chữ nhật

=> OM=ON=OK=OL (4) 

+) Chứng minh tam giác vuông có O là trung điểm cạnh huyền 

Tam giác MDK vuông tại D có O là trung điểm MK ( do ... là hình chữ nhật í )

=> OM=OK=OD

CMTT vào 2 tam giác IFQ vuông  và tam giác ENL vuông

=> OI=OF=OQ (5) ; OE=ON=OL  (6)

Từ (3) , (4) , (5) và (6) => 9 điểm I,K,L,D,E,F,M,N,Q cùng thuộc 1 đường tròn 

1/cho tam giac ABC can tai A ( goc A<900) cac duong cao AD va BE cat nhau tai H ( D thuoc BC, E thuoc AC) a/CM tu giac DHEC noi tiep duong tron b/chung minh ED=BD va goc HBD=goc HCDc/Goi O la tam cua duong tron ngoai tiep tam giac AHE.CM rang ED la tiep tuyen cua duong tron (O)2/cho ram giac ABC co ba goc nhon noi tiep duong tron (O).Hai duong cao AD va BJ cat nhau tai Ha/CM;tu giac CDHK noi tiep b/ve d.kinh AF .tia AD cat (O)tai E.CM BC//EFc/CMR; AD/HD=BD.CDb/goi I la trung diem cua BC .CMR:...
Đọc tiếp

1/cho tam giac ABC can tai A ( goc A<900) cac duong cao AD va BE cat nhau tai H ( D thuoc BC, E thuoc AC) 

a/CM tu giac DHEC noi tiep duong tron 

b/chung minh ED=BD va goc HBD=goc HCD

c/Goi O la tam cua duong tron ngoai tiep tam giac AHE.CM rang ED la tiep tuyen cua duong tron (O)

2/cho ram giac ABC co ba goc nhon noi tiep duong tron (O).Hai duong cao AD va BJ cat nhau tai H

a/CM;tu giac CDHK noi tiep 

b/ve d.kinh AF .tia AD cat (O)tai E.CM BC//EF

c/CMR; AD/HD=BD.CD

b/goi I la trung diem cua BC .CMR: H,I,F thang hang

3/cho tam giac nhon  ABC noi tiep duong tron tam O,duong cao BHva CK lan luot cat duong tron tai Eva F

a.CMR: tu giac BKHC noi tiep 

b.CM: A la diem chinh giua cu cung EF 

c.CM:OA//EF

d.CM:EF//HK

4/cho tam giac ABC vuong tai A co AB<AC.Ke duong cao AH.Tren HC lay diem D sao cho HD=Hb

a/CMR:tap giac ABD can

b/Tu C ke CF vuong goc voi AD keo dai tai E

Chung minh tu giac AHEC noi tiep duoc trong 1 duong tron .Xac dinh tam O cua duong tron nay

c/CM:AB.ED=HB.CD 

 

0
21 tháng 12 2017

B c B' A K H

Lấy B' đối xứng với B qua AK  ( K thỏa mãn \(BK\perp AB\)\(AK\perp BK\))

CM được : \(\hept{\begin{cases}BB'=2BK=2AH=2h_a\\AB=AB'\end{cases}}\)

Ta có : \(BB'^2=CB'^2-BC^2\le\left(AB'+AC\right)^2-BC^2=\left(AB+AC\right)^2-BC^2\)

\(\Rightarrow\left(2h_a\right)^2=4h_a^2\le\left(b+c\right)^2-a^2\)

Tương tự , ta có : \(4h_b^2\le\left(a+c\right)^2-b^2\)        và        \(4h_c^2\le\left(a+b\right)^2-c^2\)

Suy ra : \(4\left(h_a^2+h_b^2+h_c^2\right)\le\left(a+b\right)^2+\left(b+c\right)^2+\left(a+c\right)^2-a^2-b^2-c^2\)

\(\Rightarrow4\left(h_a^2+h_b^2+h_c^2\right)\le a^2+b^2+c^2+2ab+2bc+2ac=\left(a+b+c\right)^2\)

\(\Rightarrow\frac{\left(a+b+c\right)^2}{h_a^2+h_b^2+h_c^2}\ge4\)Hay \(P\ge4\)

" = " khi  \(B',A,C\) thẳng hàng \(\Rightarrow A\)là trung điểm của \(B'C\)\(\Rightarrow AH\)là trung tuyến \(\Delta ABC\Rightarrow\Delta ABC\)cân tại \(A\)

               Tương tự , \(\Delta ABC\)  lần lượt cân tại \(B,C\)

                Suy ra : \(\Delta ABC\)  đều 

Vậy \(MIN_P=4\)đạt được khi \(\Delta ABC\)đều

30 tháng 5 2017

Theo đề bài thì ta có:

\(ah_a=bh_b=ch_c=2\)

Ta có:

\(\left(a^2+b^2+c^2\right)\left(h_a^2+h_b^2+h_c^2\right)\ge\left(ah_a+bh_b+ch_c\right)^2\)

\(=\left(2+2+2\right)^2=36\)

Dấu = xảy ra khi \(\hept{\begin{cases}a=b=c=\frac{2}{\sqrt[4]{3}}\\h_a=h_b=h_c=\sqrt[4]{3}\end{cases}}\) 

21 tháng 10 2017

đăngg nhiều vậy linh, mà  đã làm đến đề đó rồi cơ à chăm thế