Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề:
\(\dfrac{x}{x+y+1}=\dfrac{y}{x+z+1}=\dfrac{z}{z+y-2}\)
Dựa vào t/c dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{x+y+1}=\dfrac{y}{x+z+1}=\dfrac{z}{z+y-2}=\dfrac{x+y+z}{x+y+x+z+z+y+\left(1+1-2\right)}=\dfrac{x+y+z}{x+x+y+y+z+z}=\dfrac{1\left(x+y+z\right)}{2\left(x+y+z\right)}=\dfrac{1}{2}\)\(x+y+z=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{y}{x+z+1}=\dfrac{1}{2}\)
\(2y=x+z+1\)
\(3y=\dfrac{1}{2}+1\)
\(y=\dfrac{1}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau có:
\(\dfrac{x}{x+y+1}=\dfrac{y}{x+z+1}=\dfrac{z}{x+y-2}=\dfrac{x+y+z}{2\left(x+y+z\right)}=\dfrac{1}{2}=x+y+z\)
\(\Rightarrow\dfrac{y}{x+z+1}=\dfrac{1}{2}\)
\(\Rightarrow2y=x+z+1\)
\(\Rightarrow3y=x+y+z+1\)
\(\Rightarrow3y=\dfrac{1}{2}+1\)
\(\Rightarrow y=\dfrac{1}{2}\)
Vậy...
Ta có:
\(\left\{{}\begin{matrix}2.\left(x-3\right)=3.\left(y+2\right)\\5.\left(2-z\right)=3.\left(y+2\right)\end{matrix}\right.\Rightarrow2.\left(x-3\right)=3.\left(y+2\right)=5.\left(2-z\right)\)
\(\Rightarrow\frac{2.\left(x-3\right)}{30}=\frac{3.\left(y+2\right)}{30}=\frac{5.\left(2-z\right)}{30}.\)
\(\Rightarrow\frac{x-3}{15}=\frac{y+2}{10}=\frac{2-z}{6}.\)
Đặt \(\frac{x-3}{15}=\frac{y+2}{10}=\frac{2-z}{6}=k\Rightarrow\left\{{}\begin{matrix}x=15k+3\\y=10k-2\\z=2-6k\end{matrix}\right.\)
Có: \(2x-3y+z=-4.\)
\(\Rightarrow2.\left(15k+3\right)-3.\left(10k-2\right)+2-6k=-4\)
\(\Rightarrow30k+6-\left(30k-6\right)+2-6k=-4\)
\(\Rightarrow30k+6-30k+6+2-6k=-4\)
\(\Rightarrow14-6k=-4\)
\(\Rightarrow6k=14+4\)
\(\Rightarrow6k=18\)
\(\Rightarrow k=18:6\)
\(\Rightarrow k=3.\)
+ Với \(k=3.\)
\(\Rightarrow\left\{{}\begin{matrix}x=15.3+3=45+3=48\\y=10.3-2=30-2=28\\z=2-6.3=2-18=-16\end{matrix}\right.\)
\(\Rightarrow\) Giá trị của \(B=x-y+z=48-28+\left(-16\right)\)
\(\Rightarrow B=20+\left(-16\right)\)
\(\Rightarrow B=4.\)
Vậy giá trị của \(B\) là: \(4.\)
Chúc bạn học tốt!
bạn tham khảo ở đây"https://m.hoc247.net/hoi-dap/toan-7/tinh-x-y-z-biet-2-x-3-3-y-2-5-2-z-3-y-2-va-2x-3y-z-4-faq147292.html"
đúng thì tích ngen
Lời giải:
$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0$
$\Rightarrow xy+yz+xz=0$
Khi đó:
$x^2+y^2+z^2=(x+y+z)^2-2(xy+yz+xz)=5^2-2.0=25$
Chào, kb với tớ nhé
uồi khó thế mình không giải đc