Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chu vi của một hình chữ nhật là 34 cm. Nếu chiều dài của nó đang gia tăng 5 cm và chiều rộng của nó được tăng 3 cm sau đó khu vực này đang tăng lên 80. Tìm diện tích ban đầu của hình chữ nhật.
Trả lời: Diện tích ban đầu của hình chữ nhật là ........ cm2
Chu vi của một hình chữ nhật là 34 cm. Nếu chiều dài của nó đang gia tăng 5 cm và chiều rộng của nó được tăng 3 cm sau đó khu vực này đang tăng lên 80. Tìm diện tích ban đầu của hình chữ nhật.
Trả lời: Diện tích ban đầu của hình chữ nhật là ........ cm2
\(2^2+4^2+...+100^2-\left(1^2+3^2+...+99^2\right)\)
\(=\left(2^2-1^2\right)+\left(4^2-3^2\right)+...\left(100^2-99^2\right)\)
\(=\left(2-1\right)\left(2+1\right)+\left(4-3\right)\left(4+3\right)+...+\left(100-99\right)\left(100+99\right)\)
\(=1+2+3+...+100\)
\(=\frac{100.\left(100+1\right)}{2}=5050\left(cm^2\right)\)
The width of the garden is \(\frac{x}{3}-5\) (dm)
Because area of this garden is 252, we have:
\(x\left(\frac{x}{3}-5\right)=252\)
\(\Leftrightarrow\frac{1}{3}x^2-5x-252=0\Rightarrow x=36\) (dm)
\(\Rightarrow\) The width of the garden: \(\frac{36}{3}-5=7\) (dm)
\(\Rightarrow\) The perimeter: \(\left(36+7\right).2=84\) (dm)
I don't know English very much so i can't answere your question. Sory about that :(
đựng đường cao 2 bên áp dụng 2 tam giác đồng dạng suy ra tỉ số diện tích
đáp án 22 cm2
Pythagorean theorem: \(AD=\sqrt{BD^2-AB^2}=4\) (cm)
\(\Rightarrow BC=AD=4\left(cm\right)\)
\(CC'=\sqrt{BC'^2-BC^2}=4\sqrt{2}\)
The lateral surface area: \(2CC'.\left(BC+AB\right)=56\sqrt{2}\left(cm^2\right)\)