K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2021

\(4,=\dfrac{6\left(\sqrt{2}-\sqrt{3}-3\right)}{5-2\sqrt{6}-9}=\dfrac{6\left(\sqrt{2}-\sqrt{3}-3\right)}{-4-2\sqrt{6}}\\ =\dfrac{3\left(3-\sqrt{2}-\sqrt{3}\right)}{2+\sqrt{6}}=\dfrac{\left(9-3\sqrt{2}-3\sqrt{3}\right)\left(\sqrt{6}-2\right)}{2}\\ =\dfrac{9\sqrt{6}-18-6\sqrt{3}+6\sqrt{2}-9\sqrt{2}+6\sqrt{3}}{2}\\ =\dfrac{9\sqrt{6}-3\sqrt{2}-18}{2}\)

\(7,=\dfrac{\sqrt{3}\left(\sqrt{3}+2\right)}{\sqrt{3}}+\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}-2-\sqrt{3}\\ =\sqrt{3}+2+\sqrt{2}+1-2-\sqrt{3}=1+\sqrt{2}\)

\(10,\dfrac{1}{\sqrt{a}+\sqrt{a+2}}=\dfrac{\sqrt{a}-\sqrt{a+2}}{a-a-2}=\dfrac{\sqrt{a-2}-\sqrt{a}}{2}\)

Do đó \(\dfrac{1}{\sqrt{1}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{5}}+...+\dfrac{1}{\sqrt{47}+\sqrt{49}}\)

\(=\dfrac{\sqrt{3}-\sqrt{1}+\sqrt{5}-\sqrt{3}+...+\sqrt{49}-\sqrt{47}}{2}=\dfrac{-1+\sqrt{49}}{2}=\dfrac{7-1}{2}=3\)

24 tháng 10 2021

10, \(\dfrac{1}{\sqrt{1}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{5}}+...+\dfrac{1}{\sqrt{17}+\sqrt{19}}=\dfrac{\sqrt{1}-\sqrt{3}}{\left(\sqrt{1}+\sqrt{3}\right)\left(\sqrt{1}-\sqrt{3}\right)}+\dfrac{\sqrt{3}-\sqrt{5}}{\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{3}-\sqrt{5}\right)}+...+\dfrac{\sqrt{17}-\sqrt{19}}{\left(\sqrt{17}+\sqrt{19}\right)\left(\sqrt{17}-\sqrt{19}\right)}=\dfrac{1-\sqrt{3}+\sqrt{3}-\sqrt{5}+...+\sqrt{17}-\sqrt{19}}{-2}=-\dfrac{1-\sqrt{19}}{2}\)

8 tháng 6 2016

Kẻ BK là đường cao của hình thang => BK = 12 cm
Từ B, kẻ BE//AC => ABEC là hình bình hành và BD vuông góc với BE 
Áp dụng hệ thức lượng trong tam giác BDE vuông ở B :1/BD2 + 1/BE2 = 1/BK2 
=> BE = 20 cm 
Theo định lý Py-ta-go, BD2 +BE2 =DE2 => DE = 25 cm
Lại có DE = DC+CE=DC+AB 
=> SABCD =\(\frac{\left(DC+AB\right).BK}{2}=\frac{25.12}{2}=150\) (cm2)

NV
27 tháng 7 2021

Gọi O là tâm đường tròn \(\Rightarrow\) O là trung điểm BC

\(\stackrel\frown{BE}=\stackrel\frown{ED}=\stackrel\frown{DC}\Rightarrow\widehat{BOE}=\widehat{EOD}=\widehat{DOC}=\dfrac{180^0}{3}=60^0\)

Mà \(OD=OE=R\Rightarrow\Delta ODE\) đều

\(\Rightarrow ED=R\)

\(BN=NM=MC=\dfrac{2R}{3}\Rightarrow\dfrac{NM}{ED}=\dfrac{2}{3}\)

\(\stackrel\frown{BE}=\stackrel\frown{DC}\Rightarrow ED||BC\) 

Áp dụng định lý talet:

\(\dfrac{AN}{AE}=\dfrac{MN}{ED}=\dfrac{2}{3}\Rightarrow\dfrac{EN}{AN}=\dfrac{1}{2}\)

\(\dfrac{ON}{BN}=\dfrac{OB-BN}{BN}=\dfrac{R-\dfrac{2R}{3}}{\dfrac{2R}{3}}=\dfrac{1}{2}\) 

\(\Rightarrow\dfrac{EN}{AN}=\dfrac{ON}{BN}=\dfrac{1}{2}\) và \(\widehat{ENO}=\widehat{ANB}\) (đối đỉnh)

\(\Rightarrow\Delta ENO\sim ANB\left(c.g.c\right)\)

\(\Rightarrow\widehat{NBA}=\widehat{NOE}=60^0\)

Hoàn toàn tương tự, ta có \(\Delta MDO\sim\Delta MAC\Rightarrow\widehat{MCA}=\widehat{MOD}=60^0\)

\(\Rightarrow\Delta ABC\) đều

NV
27 tháng 7 2021

undefined

5 tháng 8 2017

Ta có:

\(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}\)

\(=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)

Áp dụng vào bài toán ta được

\(A=\dfrac{1}{2.\sqrt{1}+1.\sqrt{2}}+\dfrac{1}{3.\sqrt{2}+2.\sqrt{3}}+...+\dfrac{1}{100.\sqrt{99}+99.\sqrt{100}}\)\(=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{99}}-\dfrac{1}{\sqrt{100}}\)

\(=1-\dfrac{1}{10}=\dfrac{9}{10}\)

7 tháng 7 2017

Lần sau bạn chụp lại ảnh thẳng rồi hẵng đăng lên nhé. Chụp thế có mà nhìn gãy cổ à ?

\(a,\sqrt{3+2\sqrt{2}}=\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\)

\(d,\sqrt{11-6\sqrt{2}}=\sqrt{9-6\sqrt{2}+2}=\sqrt{\left(3-\sqrt{2}\right)^2}=3-\sqrt{2}\)

\(i,\sqrt{41-12\sqrt{5}}-\sqrt{41+12\sqrt{5}}\)

\(=\sqrt{36-12\sqrt{5}+5}-\sqrt{36+12\sqrt{5}+5}\)

\(=\sqrt{\left(6-\sqrt{5}\right)^2}-\sqrt{\left(6+\sqrt{5}\right)^2}\)

\(=6-\sqrt{5}-6-\sqrt{5}\)

\(=-2\sqrt{5}\)

17 tháng 6 2019

câu 3 nào 

17 tháng 6 2019

trả lời

câu nào?? đề đâu

hok tốt

14 tháng 5 2017

29.a

Ta có: \(\left(\sqrt{11}+\sqrt{7}\right)^2=18+2\sqrt{77}\)

\(\left(\sqrt{10}+\sqrt{8}\right)^2=18+2\sqrt{80}\)

Dễ thấy: \(18+2\sqrt{77}< 18+2\sqrt{80}\)

=>\(\left(\sqrt{11}+\sqrt{7}\right)^2< \left(\sqrt{10}+\sqrt{8}\right)^2\)

\(\sqrt{11}+\sqrt{7}\)\(\sqrt{10}+\sqrt{8}\) đều dương

=>\(\sqrt{11}+\sqrt{7}< \sqrt{10}+\sqrt{8}\).

15 tháng 5 2017

29b)

\(\left(\sqrt{103}+\sqrt{105}\right)^2=208+2\sqrt{10816}\)

\(\left(2\sqrt{104}\right)^2=\left(\sqrt{104}+\sqrt{104}\right)^2=208+2\sqrt{10816}\)

(rồi làm tương tự như Đức Huy ABC, đề tên tác giả ở đây cho đỡ vi phạm bản quyền, cảm ơn vì ý tưởng nhé ^^! )

30a) \(\sqrt{x+1}=3-\sqrt{x}\Leftrightarrow x+1=9-6\sqrt{x}+x\Leftrightarrow6\sqrt{x}=8\Leftrightarrow\sqrt{x}=\dfrac{4}{3}\Leftrightarrow x=\dfrac{16}{9}\)

Vậy........

30b) \(\sqrt{x+15}=2+\sqrt{x+3}\Leftrightarrow x+15=4+4\sqrt{x+3}+x+3\Leftrightarrow\sqrt{x+3}=4\Leftrightarrow x+3=16\Leftrightarrow x=13\)

vậy...........