K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2021

18, \(\frac{x}{2}+\frac{x^2}{8}=0\Leftrightarrow4x+x^2=0\Leftrightarrow x\left(x+4\right)=0\Leftrightarrow x=-4;x=0\)

19, \(4-x=2\left(x-4\right)^2\Leftrightarrow\left(4-x\right)-2\left(4-x\right)^2=0\)

\(\Leftrightarrow\left(4-x\right)\left[1-2\left(4-x\right)\right]=0\Leftrightarrow\left(4-x\right)\left(-7+2x\right)=0\Leftrightarrow x=4;x=\frac{7}{2}\)

20, \(\left(x^2+1\right)\left(x-2\right)+2x-4=0\Leftrightarrow\left(x^2+1\right)\left(x-2\right)+2\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+3>0\right)=0\Leftrightarrow x=2\)

25 tháng 8 2021

21, \(x^4-16x^2=0\Leftrightarrow x^2\left(x-4\right)\left(x+4\right)=0\Leftrightarrow x=0;x=\pm4\)

22, \(\left(x-5\right)^3-x+5=0\Leftrightarrow\left(x-5\right)^3-\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left[\left(x-5\right)^2-1\right]=0\Leftrightarrow\left(x-5\right)\left(x-6\right)\left(x-4\right)=0\Leftrightarrow x=4;x=5;x=6\)

23, \(5\left(x-2\right)-x^2+4=0\Leftrightarrow5\left(x-2\right)-\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(5-x-2\right)=0\Leftrightarrow x=2;x=3\)

25 tháng 10 2021

ai giải giúp em đi ạ em đang cần gấp lắm ạ 

18 tháng 8 2017

23.27. \(x^2-y^2-2x+1\)

\(=\left(x-1\right)^2-y^2\)

\(=\left(x-1-y\right)\left(x-1+y\right)\)

23.25.

\(\left(x^2-4x\right)^2+\left(x-2\right)^2-10\)

\(=\left(x^2-4x\right)^2-4+\left(x-2\right)^2-6\)

\(=\left(x^2-4x+4\right)\left(x^2-4x-4\right)+x^2-4x+4-6\)

\(=\left(x^2-4x+4\right)\left(x^2-4x-10\right)\)

23.23

\(x^3-2x^2-6x+27\)

\(=\left(x^3+27\right)-2x\left(x+3\right)\)

\(=\left(x+3\right)\left(x^2-3x+9-2x\right)\)

\(=\left(x+3\right)\left(x^2-5x+9\right)\)

18 tháng 8 2017

23.27

\(x^2-y^2-2x+1\)

\(=\left(x^2-2x+1\right)-y^2\)

\(=\left(x-1\right)^2-y^2\)

\(=\left(x-1-y\right)\left(x-1-y\right)\)

24 tháng 8 2021

Trả lời:

Bài 1:

a, \(\left(2x+3\right)^2+\left(2x-3\right)^2-2\left(4x^2-9\right)\)

\(=8x^3+36x^2+54x+27+8x^3-36x^2+54x-27-8x^2+18\)

\(=16x^3-8x^2+108x+18\)

b, \(\left(x+2\right)^3+\left(x-2\right)^3+x^3-3x\left(x+2\right)\left(x-2\right)\)

\(=x^3+6x^2+12x+8+x^3-6x^2+12x-8+x^3-3x\left(x^2-4\right)\)

\(=3x^3+24x-3x^3+12x=36x\)

Bài 2:

a, \(A=\left(3x+2\right)^2+\left(2x-7\right)^2-2\left(3x+2\right)\left(2x-7\right)\)

\(=\left(3x+2-2x+7\right)^2=\left(x+9\right)^2\)

Thay x = - 19 vào A, ta có:

\(A=\left(-19+9\right)^2=\left(-10\right)^2=100\)

b, \(A=2\left(x^3+y^3\right)-3\left(x^2+y^2\right)\)

\(=2\left(x+y\right)\left(x^2-xy+y^2\right)-3\left(x^2+2xy+y^2-2xy\right)\)

\(=2\left(x+y\right)\left(x^2+2xy+y^2-3xy\right)-3\left[\left(x+y\right)^2-2xy\right]\)

\(=2\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]-3\left(x+y\right)^2+6xy\)

\(=2\left(x+y\right)^3-6xy-3\left(x+y\right)^2+6xy\)

\(=2\left(x+y\right)^3-3\left(x+y\right)^2\)

Thay x + y = 1 vào A, ta có:

\(A=2.1^3-3.1^2=-1\)

c, \(B=x^3+y^3+3xy\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\)

\(=\left(x+y\right)\left(x^2+2xy+y^2-3xy\right)+3xy\)

\(=\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]+3xy\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+3xy\)

\(=\left(x+y\right)^3-3xy\left(x+y-1\right)\)

Thay x + y = 1 vào B, ta có:

\(B=1^3-3xy.\left(1-1\right)=1-3xy.0=1-0=1\)

d, \(C=8x^3-27y^3\)

\(=\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)\)

\(=\left(2x-3y\right)\left(4x^2-12xy+9y^2+6xy\right)\)

\(=\left(2x-3y\right)\left[\left(2x-3y\right)^2+6xy\right]\)

\(=\left(2x-3y\right)^3+6xy\left(2x-3y\right)\)

Thay xy = 4 và 2x + 3y = 5 vào C, ta có:

\(C\)\(=5^3+6.4.5=125+120=245\)

24 tháng 8 2021

Trả lời:

Bài 3:

\(A=x^2+x-2=\left(x^2+x+\frac{1}{4}\right)-\frac{9}{4}=\left(x+\frac{1}{2}\right)^2-\frac{9}{4}\ge-\frac{9}{4}\forall x\)

Dấu "=" xảy ra khi \(x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}\)

Vậy GTNN của \(A=-\frac{9}{4}\Leftrightarrow x=-\frac{1}{2}\)

\(B=x^2+y^2+x-6y+2021\)

\(=x^2+y^2+x-6y+\frac{1}{4}+9+\frac{8047}{4}\)

\(=\left(x^2+x+\frac{1}{4}\right)+\left(y^2-6y+9\right)+\frac{8047}{4}\)

\(=\left(x+\frac{1}{2}\right)^2+\left(y-3\right)^2+\frac{8047}{4}\)\(\ge\frac{8047}{4}\forall x;y\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x+\frac{1}{2}=0\\y-3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=3\end{cases}}}\)

Vậy GTNN của B = \(\frac{8047}{4}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=3\end{cases}}\)

\(C=x^2+10y^2-6xy-10y+35\)

\(=x^2+9y^2+y^2-6xy-10y+25+10\)

\(=\left(x^2-6xy+9y^2\right)+\left(y^2-10y+25\right)+10\)

\(=\left(x-3y\right)^2+\left(y-5\right)^2+10\ge10\forall x;y\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x-3y=0\\y-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=15\\y=5\end{cases}}}\)

Vậy GTNN của C = 10 <=> \(\hept{\begin{cases}x=15\\y=5\end{cases}}\)

\(D=4x-x^2+5\)

\(=-\left(x^2-4x-5\right)\)

\(=-\left(x^2-4x+4-9\right)\)

\(=-\left[\left(x-2\right)^2-9\right]\)

\(=-\left(x-2\right)^2+9\le9\forall x\)

Dấu "=" xảy ra khi x - 2 = 0 <=> x = 2

Vậy GTLN của D = 9 <=> x = 2

\(E=-x^2-4y^2+2x-4y+3\)

\(=-x^2-4y^2+2x-4y-1-1+5\)

\(=-\left(x^2-2x+1\right)-\left(4y^2+4y+1\right)+5\)

\(=-\left(x-1\right)^2-\left(2y+1\right)^2+5\le5\forall x;y\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x-1=0\\2y+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-\frac{1}{2}\end{cases}}}\)

Vậy GTLN của D = 5  <=> \(\hept{\begin{cases}x=1\\y=-\frac{1}{2}\end{cases}}\)

20 tháng 8 2021

x^2 - x - y^2 - y 

= x^2 - y^2 - x - y 

= ( x - y ) ( x + y ) - ( x + y ) 

= ( x + y ) ( x - y - 1  ) 

20 tháng 8 2021

x^2 - 2xy + y^2 - z^2 

= ( x- y ) ^2 - z^2 

= ( x - y - z ) ( x - y + z ) 

30 tháng 10 2021

b) Bạn đã chứng minh được tứ giác EKFC là hình bình hành ở câu a, mà EF cắt CK tại I \(\Rightarrow\)I là trung điểm EF (tính chất hình bình hành)

\(\Rightarrow AI\)là trung tuyến của \(\Delta AEF\)

Mà \(\Delta AEF\)vuông tại A \(\Rightarrow AI=\frac{1}{2}EF\)(tính chất tam giác vuông)

Lại có \(EI=\frac{1}{2}EF\)do I là trung điểm của đoạn EF \(\Rightarrow AI=EI\left(=\frac{1}{2}EF\right)\)

Mặt khác \(BE\perp AF\)\(MI\perp AF\left(gt\right)\)\(\Rightarrow BE//MI\)(quan hệ từ vuông góc đến song song)

Mà tứ giác BEFD là hình bình hành \(\Rightarrow BD//EF\)(tính chất hình bình hành)

\(\Rightarrow BM//EI\)(vì \(M\in BD;I\in EF\))

Xét tứ giác BEIM có \(BE//MI\left(cmt\right);BM//EI\left(cmt\right)\)\(\Rightarrow\)Tứ giác BEIM là hình bình hành (định nghĩa)

\(\Rightarrow BM=EI\)(tính chất hình bình hành)

Mà \(AI=EI\left(cmt\right)\)\(\Rightarrow AI=BM\left(=EI\right)\left(đpcm\right)\)

c) Do tứ giác BEFD là hình bình hành \(\Rightarrow\hept{\begin{cases}BE//DF\\BE=DF\end{cases}}\)(tính chất hình bình hành)

Mà \(\hept{\begin{cases}BE\perp CF\\BE=CF\end{cases}}\left(gt\right)\Rightarrow\hept{\begin{cases}DF\perp CFtạiF\\DF=CF\end{cases}}\)\(\Rightarrow\)F nằm trên đường trung trực của đoạn CD và \(\Delta CDF\)vuông cân tại F

\(\Rightarrow\widehat{DCF}=45^0\)

\(\Delta ABC\)vuông cân tại A (gt) \(\Rightarrow\widehat{ACB}=45^0\)

 \(\Rightarrow\widehat{BCD}=180^0-\widehat{ACB}-\widehat{DCF}=180^0-45^0-45^0=90^0\)

\(\Rightarrow\Delta BCD\)vuông tại C.

Xét hình thang BEFD (BE//DF) ta có I là trung điểm EF (cmt) và IM//BE (cmt) \(\Rightarrow\)M là trung điểm của đoạn BD

\(\Rightarrow\)CM là trung tuyến của \(\Delta BCD\)

Mặt khác \(\Delta BCD\)vuông tại C \(\Rightarrow CM=\frac{1}{2}BD\)(tính chát tam giác vuông)

Mà \(DM=\frac{1}{2}BD\)do M là trung điểm BD \(\Rightarrow DM=CM\left(=\frac{1}{2}BD\right)\)

\(\Rightarrow\)M nằm trên đường trung trực của đoạn CD.

Mà F cũng nằm trên đường trung trực của đoạn CD (cmt)

\(\Rightarrow\)MF là đường trung trực của đoạn CD \(\Rightarrow\)C đối xứng với D qua MF (đpcm)