Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:b:c=2:4:5 =>a/2 = b/4 = c/5.
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
a/2 = b/4 = c/5 = a + b + c/2 + 4 + 5 = 22/11 = 2
a/2 = 2 => a = 4
b/4 = 2 => b = 8
c/5 = 2 => c = 10
a:b:c=2:4:5 =>a/2 = b/4 = c/5.
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
a/2 = b/4 = c/5 = a + b + c/2 + 4 + 5 = 22/11 = 2
a/2 = 2 => a = 4
b/4 = 2 => b = 8
c/5 = 2 => c = 10
P/s tham khảo nha
Đầu tiên vẽ đoạn thẳng AC = 5cm
Dùng compa vẽ cung tròn (A; 4cm) và cung tròn (C; 3cm)
Hai cung tròn này cắt nhau tại B
Vậy là sẽ đc ΔABC với đầy đủ đk đề cho
Giải:
a) Vì \(\Delta ABC\) có AB = AC nên \(\Delta ABC\) cân tại A
\(\Rightarrow\widehat{B}=\widehat{C}\)
Xét \(\Delta EBC\) có: \(\widehat{B}+\widehat{C_1}=90^o\) ( do \(\widehat{BEO}=90^o\) )
Xét \(\Delta DBC\) có: \(\widehat{C}+\widehat{B_1}=90^o\) ( do \(\widehat{CDB}=90^o\) )
Mà \(\widehat{B}=\widehat{C}\Rightarrow\widehat{B_1}=\widehat{C_1}\) (*)
Xét \(\Delta EBC,\Delta DBC\) có:
\(\widehat{B}=\widehat{C}\)
\(BC\): cạnh chung
\(\widehat{B_1}=\widehat{C_1}\) ( theo (*) )
\(\Rightarrow\Delta EBC=\Delta DBC\left(g-c-g\right)\)
\(\Rightarrow BD=CE\) ( cạnh t/ứng ) ( đpcm )
\(\Rightarrow BE=CD\) ( cạnh t/ứng )
b) Ta có: \(\widehat{B}=\widehat{C}\)
\(\widehat{B_1}=\widehat{C_1}\)
\(\Rightarrow\widehat{B}-\widehat{B_1}=\widehat{C}-\widehat{C_1}\)
\(\Rightarrow\widehat{B_2}=\widehat{C_2}\) (**)
Xét \(\Delta OBE,\Delta OCD\) có:
\(\widehat{BEO}=\widehat{CDO}\left(=90^o\right)\)
BE = CD ( theo phần a )
\(\widehat{B_2}=\widehat{C_2}\) ( theo (**) )
\(\Rightarrow\Delta OBE=\Delta OCD\left(g-c-g\right)\) ( đpcm )
Vì \(\left|x-\frac{2}{3}\right|\ge0\); \(\left|2y+3\right|\ge0\); \(\left(z-2\right)^2\ge0\)
=> \(\left|x-\frac{2}{3}\right|+\left|2y+3\right|+\left(z-2\right)^2\ge0\)
Mà theo đề bài: \(\left|x-\frac{2}{3}\right|+\left|2y+3\right|+\left(z-2\right)^2=0\)
=> \(\begin{cases}\left|x-\frac{2}{3}\right|=0\\\left|2y+3\right|=0\\\left(z-2\right)^2=0\end{cases}\)=> \(\begin{cases}x-\frac{2}{3}=0\\2y+3=0\\z-2=0\end{cases}\)=> \(\begin{cases}x=\frac{2}{3}\\2y=-3\\z=2\end{cases}\)=> \(\begin{cases}x=\frac{2}{3}\\y=-\frac{3}{2}\\z=2\end{cases}\)
Vậy \(x=\frac{2}{3};y=-\frac{3}{2};z=2\)
Gọi 3 phần đó lần lượt là a, b, c.
a.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+b+c}{2+3+4}=\frac{99}{9}=11\)
\(\frac{a}{2}=11\Rightarrow a=11\times2=22\)
\(\frac{b}{3}=11\Rightarrow b=11\times3=33\)
\(\frac{c}{4}=11\Rightarrow c=11\times4=44\)
b.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a+b+c}{3+5+7}=\frac{285}{15}=19\)
\(\frac{a}{3}=19\Rightarrow a=19\times3=57\)
\(\frac{b}{5}=19\Rightarrow b=19\times5=95\)
\(\frac{c}{7}=19\Rightarrow c=19\times7=133\)
d.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{4}=\frac{b}{7}=\frac{c}{8}=\frac{d}{12}=\frac{a+b+c+d}{4+7+8+12}=\frac{465}{31}=15\)
\(\frac{a}{4}=15\Rightarrow a=15\times4=60\)
\(\frac{b}{7}=15\Rightarrow b=15\times7=105\)
\(\frac{c}{8}=15\Rightarrow c=15\times8=120\)
\(\frac{d}{12}=15\Rightarrow d=15\times12=180\)
a) 99= 22+33+44
b) 285=57+95+133
c) 2A5 là cái gì ?
d) 465= 60+105+120+180