Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) \(\rightarrow3\)
B) \(\rightarrow1\)
C) \(\rightarrow5\)
D) \(\rightarrow2\)
Bài 1:
x y m B A C 1 1 2 1
Qua B, vẽ tia Bm sao cho Bm // Ax
Bm // Ax ( cách vẽ ) => góc A1 + góc B1 = 180o ( trong cùng phía )
Mà góc A1 = 140o ( giả thiết ) => góc B1 = 40o
Ta có: góc B1 + góc B2 = góc ABC
Mà góc ABC = 70o ( giả thiết ); góc B1 = 40o ( chứng minh trên )
=> góc B2 = 30o
Ta có: góc B2 + góc C1 = 30o + 150o = 180o
Mà hai góc này ở vị trí trong cùng phía
=> Bm // Cy ( dấu hiệu nhận biết 2 đường thẳng song song )
Ta lại có:
Ax // Bm ( cách vẽ ); Cy // Bm ( chứng minh trên )
=> Ax // Cy ( tính chất 3 quan hệ từ vuông góc đến song song ) ( đpcm )
Bài 3:
A B C F E G N M H 1 2
a) Chứng minh AH < \(\dfrac{1}{2}\) ( AB + AC )
+) Vì AH vuông góc với BC ( giả thiết )
=> AH < AB ( quan hệ giữa đường vuông góc và đường xiên ) ( 1 )
+) Vì AH vuông góc với BC ( giả thiết )
=> AH < AC ( quan hệ giữa đường vuông góc và đường xiên ) ( 2 )
+) Từ ( 1 ) và ( 2 ) => AH + AH < AB + AC
=> 2 . AH < AB + AC
=> AH < \(\dfrac{1}{2}\) ( AB + AC ) ( đpcm )
b) Chứng minh EF = BC
+) Vì BM là đường trung tuyến của tam giác ABC ( giả thiết )
=> \(\dfrac{BG}{BM}=\dfrac{2}{3}\)
=> \(\dfrac{MG}{BG}=\dfrac{1}{2}\)
=> 2 . MG = BG
Mà EM = MG ( do BM là đường trung tuyến của tam giác ABC )
=> EM + MG = BG => EG = BG
+) Vì CN là đường trung tuyến của tam giác ABC ( giả thiết )
=> \(\dfrac{CG}{CN}=\dfrac{2}{3}\)
=> \(\dfrac{GN}{CG}=\dfrac{1}{2}\)
=> 2 . GN = CG
Mà FN = GN ( do CN là đường trung tuyến của tam giác ABC )
=> FN + GN = CG => FG = CG
Góc G1 = góc G2 ( đối đỉnh )
Xét tam giác FEG và tam giác CBG có:
FG = CG ( chứng minh trên )
EG = BG ( chứng minh trên )
Góc G1 = góc G2 ( chứng minh trên )
=> tam giác FEG = tam giác CBG ( c.g.c )
=> EF = BC ( 2 cạnh tương ứng ) ( đpcm )
Giá trị (x) | Tần số (n) | Các tích (x.n) | |
17 | 3 | 51 | |
18 | 5 | 90 | |
19 | 4 | 76 | |
20 | 2 | 40 | |
21 | 3 | 63 | |
22 | 2 | 44 | |
24 | 3 | 72 | |
26 | 3 | 78 | |
28 | 1 | 28 | |
30 | 1 | 30 | |
31 | 2 | 62 | |
32 | 1 | 32 | = \(\dfrac{666}{30}=22,2\) |
N = 30 | Tổng: 666 |
Phép tính | Ước lương kết quả | ĐS đúng |
24.68:12 | 20.70:10 = 140 | 136 |
7,8.3,1:1,6 | 8.3:2=12 | 15,1125 |
6,9.72:24 | 7.70:20 = 24,5 | 20,7 |
56.9,9:8,8 | 60.10:9 = 66,(6) | 63 |
0,38.0,45:0,95 | 0.0:1=0 | 0,18 |
\(\left\{{}\begin{matrix}x=\dfrac{5}{9}y\\x=\dfrac{10}{21}z\\2x=3y+z=50\end{matrix}\right.\)\(\Rightarrow2x-\dfrac{27}{5}+\dfrac{21}{10}x=50\)
\(\left\{{}\begin{matrix}x=\dfrac{500}{15}\\y=-\dfrac{900}{13}\\-\dfrac{1050}{13}\end{matrix}\right.\)
b: Ta có: \(\dfrac{x}{-3}=\dfrac{y}{7}\)
nên \(\dfrac{x}{6}=\dfrac{y}{-14}\left(1\right)\)
Ta có: \(\dfrac{y}{-2}=\dfrac{z}{5}\)
nên \(\dfrac{y}{-14}=\dfrac{z}{35}\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra \(\dfrac{x}{6}=\dfrac{y}{-14}=\dfrac{z}{35}\)
hay \(\dfrac{-2x}{12}=\dfrac{4y}{-56}=\dfrac{5z}{175}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{-2x}{12}=\dfrac{4y}{-56}=\dfrac{5z}{175}=\dfrac{-2x-4y+5z}{12+56+175}=\dfrac{146}{243}\)
Do đó: \(\left\{{}\begin{matrix}x=\dfrac{292}{81}\\y=-\dfrac{2044}{243}\\z=\dfrac{5110}{243}\end{matrix}\right.\)