Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D
Ta có:
\(S_{ABC}=pr;S_{ACD}=\frac{AC+CD+AD}{2}.r_1;S_{ABD}=\frac{AB+BD+AD}{2}.r_2\)
Vì AD là tia phân giác \(\widehat{BAC}\)nên đường cao từ D đến AB và AC là bằng nhau.
\(\Rightarrow\hept{\begin{cases}S_{ACD}=\frac{S_{ABC}}{3}\\S_{ABD}=\frac{2S_{ABC}}{3}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{AC+CD+AD}{2}.r_1=\frac{pr}{3}\\\frac{AB+BD+AD}{2}.r_2=\frac{2pr}{3}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}AC+CD+AD=\frac{2pr}{3r_1}\left(1\right)\\AB+BD+AD=\frac{4pr}{3r_2}\left(2\right)\end{cases}}\)
Lấy (1) + (2) ta dược
\(AC+CD+AB+BD+2AD=\frac{2pr}{3r_1}+\frac{4pr}{3r_2}\)
\(\Leftrightarrow2p+2AD=\frac{2pr}{3r_1}+\frac{4pr}{3r_2}\)
\(\Leftrightarrow AD=\frac{pr}{3r_1}+\frac{2pr}{3r_2}-p=\frac{pr}{3}\left(\frac{1}{r_1}+\frac{2}{r_2}\right)-p\)
M T A B O
xét (o) có ^MTA là góc tạo bởi tt à dc chắn cung TA
^TBM là góc nt chắn cung TA
=> ^MTA = ^TBM (hq)
xét tg MTA và tg MBT có ^M chung
=> tg MTA đồng dạng tg MBT (g-g)
=> MT/MB = MA/MT
=> MT^2 = MB.MA
bài 2 tự kẻ hình đi
a, như bài 1
b, tg MAC đồng dạng tg MCB (câu a)
=> MA/MC = MC/MB
=> MC^2 = MA.MB (1)
xét tg MCO có ^MCO = 90 do MC là tt
CH _|_ MO
=> mc^2 = mh.mo (ĐL) (2)
(1)(2) => MH.MO = MA.MB
c, xét tg AHC và tg ACB có : ^ACB = ^AHC = 90(do C thuộc đường tròn đk AB)
^cah CHUNG
=> tg AHC đồng dạng tg ACB
=> ^ACH = ^CBA mà ^CBA = ^MCA (Câu a)
=> ^ACH = ^MCA
=> CA là pg...
Bài 2:
ΔOBC cân tại O
mà OK là trung tuyến
nên OK vuông góc BC
Xét tứ giác CIOK có
góc CIO+góc CKO=180 độ
=>CIOK là tứ giác nội tiếp
Bài 3:
Xét tứ giác EAOM có
góc EAO+góc EMO=180 độ
=>EAOM làtứ giác nội tiếp