Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt điều kiện : a, b, c, d khác 0
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)
\(=\frac{2a+b+c+d+a+2b+c+d+a+b+2c+d+a+b+c+2d}{a+b+c+d}=\frac{5\left(a+b+c+d\right)}{a+b+c+d}\)
Nếu \(a+b+c+d=0\Rightarrow\hept{\begin{cases}a+b=-\left(c+d\right)\\b+c=-\left(d+a\right)\\c+d=-\left(a+b\right)\end{cases}\Rightarrow d+a=-\left(b+c\right)\Rightarrow M=-4}\)
Và nếu a + b + c + d khác 0 \(\Rightarrow\frac{2a+b+c+d}{a}=5\Rightarrow b+c+d=3a\)
Ta có : \(\hept{\begin{cases}a+b+c=3d\\a+c+d=3b\\a+b+d=3c\end{cases}\Rightarrow a=b=c=d}\)
Khi đó \(M=4\)
Vậy \(\Rightarrow\orbr{\begin{cases}M=4\\M=-4\end{cases}}\)
Trừ 1 ở mỗi phân số ta đuợc :
\(\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)
\(=\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
Nếu : a+b+c+d\(\ne\)0
=> a=b=c=d
=> \(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=1+1+1+1=4\)
Nếu a+b+c+d=0
=> +) a+b=-(c+a)
+) b+c=-(d+a)
+) c+d=-(a+b)
+) d+a=-(b+c)
=> M=(-1)+(-1)+(-1)+(-1)=-4
Xem lại đề biểu thức M đi bạn, hình như dấu + chứ không phải dấu = nha
còn ai nữa à =='
đk a,b,c,d khác 0
áp dugnj tc dãy tỉ số = nhau \(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)
\(=\frac{2a+b+c+d+a+2b+c+d+a+b+2c+d+a+b+c+2d}{a+b+c+d}=\frac{5\left(a+b+c+d\right)}{a+b+c+d}\)
+> nếu a+b+c+d =0\(\Rightarrow\hept{\begin{cases}a+b=-\left(c+d\right)\\b+c=-\left(d+a\right)\\c+d=-\left(a+b\right)\end{cases}\hept{\begin{cases}d+a=-\left(b+c\right)\\\end{cases}}}\)\(\Rightarrow M=-4\)
+> a+b+c+d khác 0 \(\Rightarrow\frac{2a+b+c+d}{a}=5\Rightarrow b+c+d=3a\)
Tương tự ta có \(\hept{\begin{cases}a+b+c=3d\\a+c+d=3b\\a+b+d=3c\end{cases}}\)\(\Rightarrow a=b=c=d\)
Khi đó M=4
Vậy M=4 hoặc M=-4
Đặt dãy tỷ số bằng nhau là (1)
\(\Rightarrow\left(1\right)=\frac{5\left(a+b+c+d\right)}{a+b+c+d}=5\)
\(\Rightarrow\left(1\right)=\frac{2\left(a+b\right)+3\left(c+d\right)}{c+d}=\frac{2\left(a+b\right)}{c+d}+3=5\Rightarrow\frac{\left(a+b\right)}{c+d}=1\)
Chứng minh tương tự ta tính và suy ra
\(\frac{b+c}{d+a}=\frac{c+d}{a+b}=\frac{d+a}{b+c}=1\)
\(\Rightarrow\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=1+1+1+1=4\)
Từ giả thiết suy ra:
\(\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)
\(\Rightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
* Nếu a + b + c + d = 0 thì a + b = - ( c + d ); b + c = - ( d + a ); c + d = - ( a + b ); d + a = - ( b + c )
Khi đó M = ( - 1 ) + ( - 1 ) + ( - 1 ) + ( - 1 ) = - 4
* Nếu a + b + c + d \(\ne0\) thì \(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\)nên a = b = c = d
Khi đó M = 1 + 1 + 1 + 1 = 4
Từ \(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)
=> \(2+\frac{b+c+d}{a}=2+\frac{a+c+d}{b}=2+\frac{a+b+d}{c}=2+\frac{a+b+c}{d}\)
=> \(\frac{b+c+d}{a}=\frac{a+c+d}{b}=\frac{a+b+d}{c}=\frac{a+b+c}{d}=\frac{\left(b+c+d\right)+\left(a+c+d\right)+\left(a+b+d\right)+\left(a+b+c\right)}{a+b+c+d}=\frac{3\left(a+b+c+d\right)}{a+b+c+d}=3\)
Từ \(3=\frac{b+c+d}{a}=\frac{a+c+d}{b}=\frac{\left(a+b\right)+2\left(c+d\right)}{a+b}=1+2.\frac{c+d}{a+b}\)=> \(\frac{c+d}{a+b}=\frac{3-1}{2}=1\)
Từ \(3=\frac{a+b+d}{c}=\frac{a+b+c}{d}=\frac{2.\left(a+b\right)+\left(c+d\right)}{c+d}=1+2.\frac{a+b}{c+d}\) => \(\frac{a+b}{c+d}=1\)
Từ \(3=\frac{a+b+c}{d}=\frac{b+c+d}{a}=\frac{\left(a+b+c\right)+\left(b+c+d\right)}{d+a}=2.\frac{b+c}{d+a}+1\)=> \(\frac{b+c}{d+a}=1\)
Từ \(3=\frac{a+c+d}{b}=\frac{a+b+d}{c}=\frac{2\left(a+d\right)+\left(b+c\right)}{b+c}=2.\frac{d+a}{b+c}+1\)=> \(\frac{d+a}{b+c}=1\)
Vậy M = 1 + 1+ 1+ 1 = 4
cái này trong nâng cao và phát triển toán 7 ý , trong câu hỏi tương tự cũng có