Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Đặt \(\sqrt[3]{x+5}=a\); \(\sqrt[3]{x+6}=b\)
Từ đó PT <=> a + b = \(\sqrt[3]{a^3+b^3}\)
<=> a3 + b3 + 3ab(a+b) = a3 + b3
<=> 3ab(a+b) = 0
<=> a = 0 hoặc b = 0
Thế vào giải ra là tìm được nghiệm
Đặt \(\left\{{}\begin{matrix}\sqrt[3]{x+11}=a\\\sqrt[3]{x+2}=b\end{matrix}\right.\) . Ta có hệ phương trình :
\(\left\{{}\begin{matrix}a-b=3\\a^3-b^3=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b+3\\\left(b+3\right)^3-b^3=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b+3\\9b^2+27b+18=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=b+3\\\left(b+1\right)\left(b+2\right)=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=2\\b=-1\end{matrix}\right.\\\left\{{}\begin{matrix}a=1\\b=-2\end{matrix}\right.\end{matrix}\right.\)
Với \(a=2;b=-1\)
\(\Rightarrow\left\{{}\begin{matrix}\sqrt[3]{x+11}=2\\\sqrt[3]{x+2}=-1\end{matrix}\right.\Rightarrow x=-3\)
Với \(a=1;b=-2\)
\(\Rightarrow\left\{{}\begin{matrix}\sqrt[3]{x+11}=1\\\sqrt[3]{x+2}=-2\end{matrix}\right.\Rightarrow x=-10\)
Vậy \(S=\left\{-10;-3\right\}\)
\(\left(x-1\right)+4.\left(\sqrt{x+3}-2\right)+2.\left(\sqrt{3-2x}-1\right)=0\)
\(x-1+\dfrac{4.\left(x+3-4\right)}{\sqrt{x+3}+2}+\dfrac{2.\left(3-2x-1\right)}{\sqrt{3-2x}+1}=0\)
=> x-1+\(\dfrac{4.\left(x-1\right)}{\sqrt{x+3}+2}+\dfrac{4.\left(1-x\right)}{\sqrt{3-2x}+1}=0\)
=> (x-1).\(\left(\dfrac{4}{\sqrt{x+3}+2}+\dfrac{4}{\sqrt{3-2x}+1}\right)=0\)
=> x=1 (do \(\dfrac{4}{\sqrt{x+3}+2}+\dfrac{4}{\sqrt{3-2x}+1}>0\)
a) \(3\sqrt{x}-2\sqrt{9x}+\sqrt{16x}=5\)
\(\Leftrightarrow3\sqrt{x}-6\sqrt{x}+4\sqrt{x}=5\)
\(\Leftrightarrow\sqrt{x}=5\)
<=> x = 25
b) pt <=> \(\left(x^2+5\right)=\left(x+1\right)^2\)
<=> \(\left(x^2+5\right)=x^2+2x+1\)
<=> 2x = 4
<=> x = 2
c) pt <=> \(45-14\sqrt{x}+x=x-11\)
<=> \(45+11=14\sqrt{x}\)
<=> \(56=14\sqrt{x}\)
<=> \(4=\sqrt{x}\)
<=> x = 16
p/s : Cậu tự đặt điều kiện nhé
ĐKXĐ: \(x\ge-3\)
Ta có phương trình :
\(x^3+11=3\sqrt{x+3}\Leftrightarrow x^3+8=3\sqrt{x+3}-3\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-2x+4\right)=3\left(\sqrt{x+3}-1\right)\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-2x+4\right)-3\frac{\left(\sqrt{x+3}-1\right)\left(\sqrt{x+3}+1\right)}{\sqrt{x+3}+1}=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-2x+4\right)-\left(x+2\right)\frac{3}{\sqrt{x+3}+1}=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-2x+1-\frac{3}{\sqrt{x+3}+1}+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+2=0\\x^2-2x+1-\frac{3}{\sqrt{x+3}+1}+3=0\end{cases}}\)
+) \(x+2=0\Leftrightarrow x=-2.\)(Thỏa mãn ĐKXĐ)
+) \(x^2-2x+1-\frac{3}{\sqrt{x+3}+1}+3=0\)
\(\Leftrightarrow\left(x-1\right)^2=\frac{3}{\sqrt{x+3}+1}-3\)
Dễ thấy : \(\sqrt{x+3}+1\ge1\Rightarrow0< \frac{3}{\sqrt{x+3}+1}\le3\Rightarrow\frac{3}{\sqrt{x+3}+1}-3\le0\)Dấu '=' xảy ra khi \(x=-3\)
\(\left(x-1\right)^2\ge0\)Dấu '=' xảy ra khi \(x=1.\)
\(\Rightarrow\left(x-1\right)^2=\frac{3}{\sqrt{x+3}+1}-3=0\Leftrightarrow\hept{\begin{cases}x=-3\\x=1\end{cases}\Leftrightarrow x\in\varnothing.}\)
Vậy phương trình đã cho có nghiệm duy nhất là \(x=-2\)
Lời giải:
a) ĐK: $x\geq \frac{1}{2}$
PT $\Rightarrow 2x-1=(\sqrt{2}-1)^2=3-2\sqrt{2}$
$\Leftrightarrow 2x=4-2\sqrt{2}$
$\Leftrightarrow x=2-\sqrt{2}$ (thỏa mãn)
Vậy.........
b) ĐK: $x\geq \frac{-11}{3}$
PT $\Rightarrow 3x+11=(3+\sqrt{2})^2=11+6\sqrt{2}$
$\Leftrightarrow x=2\sqrt{2}$ (thỏa mãn)
Vậy.........
c)
ĐK: $x\geq -5$
Ta thấy: $\sqrt{x+5}\geq 0$ với mọi $x\geq -5$, mà $\sqrt{3}-2< 0$ nên PT vô nghiệm.
d)
ĐK: $x\geq -38$
PT $\Rightarrow x+38=(3+\sqrt{5})^2=14+6\sqrt{5}$
$\Leftrightarrow x=6\sqrt{5}-24$ (thỏa mãn)
Vậy........
TL:
ĐKXĐ: x≥−3x≥−3
Ta có phương trình :
x3+11=3√x+3⇔x3+8=3√x+3−3x3+11=3x+3⇔x3+8=3x+3−3
⇔(x+2)(x2−2x+4)=3(√x+3−1)⇔(x+2)(x2−2x+4)=3(x+3−1)
⇔(x+2)(x2−2x+4)−3(√x+3−1)(√x+3+1)√x+3+1=0⇔(x+2)(x2−2x+4)−3(x+3−1)(x+3+1)x+3+1=0
⇔(x+2)(x2−2x+4)−(x+2)3√x+3+1=0⇔(x+2)(x2−2x+4)−(x+2)3x+3+1=0
⇔(x+2)(x2−2x+1−3√x+3+1+3)=0⇔(x+2)(x2−2x+1−3x+3+1+3)=0
^HT^
⇒\orbr{x+2=0x2−2x+1−3√x+3+1+3=0⇒\orbr{x+2=0x2−2x+1−3x+3+1+3=0
+) x+2=0⇔x=−2.x+2=0⇔x=−2.(Thỏa mãn ĐKXĐ)
+) x2−2x+1−3√x+3+1+3=0x2−2x+1−3x+3+1+3=0
⇔(x−1)2=3√x+3+1−3⇔(x−1)2=3x+3+1−3
Dễ thấy : √x+3+1≥1⇒0<3√x+3+1≤3⇒3√x+3+1−3≤0x+3+1≥1⇒0<3x+3+1≤3⇒3x+3+1−3≤0Dấu '=' xảy ra khi x=−3x=−3
(x−1)2≥0(x−1)2≥0Dấu '=' xảy ra khi x=1.x=1.
⇒(x−1)2=3√x+3+1−3=0⇔\hept{x=−3x=1⇔x∈∅.⇒(x−1)2=3x+3+1−3=0⇔\hept{x=−3x=1⇔x∈∅.
Vậy phương trình đã cho có nghiệm duy nhất là x=−2
^HT^
\(\sqrt{x+3^1}\)+ 11 + x3
= x1 + x3 + 11
= \(\sqrt{x+x^1+3+1^2}\)
= \(x+x^1\sqrt{x+3}\)
= \(\sqrt{11+x}+3=11^3\)
= 7