Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
Ta có: \(x=-9\Leftrightarrow-10=x-1\Rightarrow10=1-x\)nên thay vào ta tính:
\(P\left(-9\right)=1+\left(1-x\right)x+\left(1-x\right)x^2+\left(1-x\right)x^3+...+\left(1-x\right)x^{19}+\left(1-x\right)x^{20}\)
\(P\left(-9\right)=1+x-x^2+x^2-x^3+x^3-x^4+...+x^{20}-x^{21}\)
\(P\left(-9\right)=1+x-x^{21}\)
\(P\left(-9\right)=1-9+9^{21}\)
\(P\left(-9\right)=9^{21}-8\)
Vậy khi \(x=-9\)thì \(P\left(x\right)=9^{21}-8\)
Học tốt!!!!
\(A=5x\left(4x^2-2x+1\right)-2x\left(10x^2-5x-2\right)\)
\(=20x^3-10x^2+5x-20x^3+10x^2+4x\)
\(=9x=9.15=135\)
1 2y(4X bình -9)
2 5(X bình +10+1-Y bình)
3 3X(X bình +2X+1-4Y bình)
4 ab(a bình-b bình) + (a+b)bình
5 2X bình (X-4) - 2Xy(Y-4)
xong
\(8x^2-18y=2y\left(4x^2-9\right)\)
5)\(2x^3-2xy^2-8x^2+8xy\)=\(2x\left(x^2-Y^2\right)-8X\left(x+y\right)\)=\(2x\left(x+y\right)\left(x-y\right)-8x\left(x+y\right)\)=
\(\left(5x^{n-2}y^7-8x^{n+2}y^8\right)⋮5x^3y^{n+1}\Leftrightarrow\hept{\begin{cases}n-2\ge3\\7\ge n+1\end{cases}}\Leftrightarrow\orbr{\begin{cases}n=5\\n=6\end{cases}}\)
1) \(25x^4-10x^2y+y^2\)
\(\Leftrightarrow\left(5x^2\right)^2+2\cdot\left(5x^2\right)\cdot y+y^2\)
\(\Leftrightarrow\left(5x^2+y\right)^2\)
2) \(x^4+2x^3-4x-4\)
\(\Leftrightarrow\left(x^4-4\right)+\left(2x^3-4x\right)\Leftrightarrow\left(x^2-2\right)\left(x^2+2\right)+2x\left(x^2-2\right)\)
\(\Leftrightarrow\left(x^2-2\right)\left(x^2+2+2x\right)\)
3) \(x^4+x^2+1\)
\(\Leftrightarrow x^4+x^2-x+x+1\)
\(\Leftrightarrow\left(x^4-x\right)+\left(x^2+x+1\right)\)
\(\Leftrightarrow x\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2-x+1\right)\)
4) \(x^3-5x^2-14x\)\(\Leftrightarrow x^3-7x^2+2x^2-14x\)
\(\Leftrightarrow x^2\left(x-7\right)+2x\left(x-7\right)\)\(\Leftrightarrow x\left(x+2\right)\left(x-7\right)\)
5) \(x^2yz+5xyz-14yz\)\(\Leftrightarrow yz\left(x^2+5x-14\right)\)
\(\Leftrightarrow yz\left(x^2+7x-2x-14\right)\)
\(\Leftrightarrow yz\left[x\left(x+7\right)-2\left(x+7\right)\right]\)
\(\Leftrightarrow yz\left(x+7\right)\left(x-2\right)\)
a) 5x2 - 10x = 5x( x - 2 )
b) x2 - y2 - 2x + 2y = (x2 - y2) - (2x - 2y)
= (x - y ) ( x + y)-2 (x-y)
= ( x - y) ( x + y - 2)
c) 4x2 - 4xy - 8y2 = (4x2 - 4xy + 8y2) - 9y2
= (2x - 9y2) - 3y2
= (2x - y - 3y) (2x - y + 3y)
= (2x - 4y) (2x + 2y)
= 4(x - 2y) (x + y)
a) 5x2 - 10x = 5x( x - 2 )
b) x2 - y2 - 2x + 2y = (x2 - y2) - (2x - 2y)
= (x - y ) ( x + y)-2 (x-y)
= ( x - y) ( x + y - 2)
c) 4x2 - 4xy - 8y2 = (4x2 - 4xy + 8y2) - 9y2
= (2x - 9y2) - 3y2
= (2x - y - 3y) (2x - y + 3y)
= (2x - 4y) (2x + 2y)
= 4(x - 2y) (x + y)
\(x^2+8xy+16y^2+2x+8y-3\)
\(=x^2+2.x.4y+\left(4y\right)^2+2\left(x+4y\right)-3\)
\(=\left(x+4y\right)^2+2\left(x+4y\right)+1-2^2\)
\(=\left(x+4y+1\right)^2-2^2\)
\(=\left(x+4y+1-2\right)\left(x+4y+1+2\right)\)
\(=\left(x+4y-1\right)\left(x+4y+3\right)\)
\(4x^2+4xy+y^2+10x+5y-6\)
\(=\left(2x\right)^2+2.2x.y+y^2+5\left(2x+y\right)-6\)
\(=\left(2x+y\right)^2+5\left(2x+y\right)-6\)
\(=\left(2x+y\right)^2+2\left(2x+y\right).\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2-\left(\dfrac{7}{2}\right)^2\)
\(=\left(2x+y+\dfrac{5}{2}\right)^2-\left(\dfrac{7}{2}\right)^2\)
\(=\left(2x+y+\dfrac{5}{2}-\dfrac{7}{2}\right)\left(2x+y+\dfrac{5}{2}+\dfrac{7}{2}\right)\)
\(=\left(2x+y-1\right)\left(2x+y+6\right)\)
a , \(5x^2+9y^2-12xy-6x+9=0\)
\(\Leftrightarrow25x^2+45y^2-60xy-30x+45=0\)
\(\Leftrightarrow\left(5x\right)^2-2.5.\left(6y+3\right)+\left(6y+3\right)^2+9y^2-36y+36=0\)
\(\Leftrightarrow\left(5x-6y-3\right)^2+9\left(y^2-4y+4\right)=0\)
\(\Leftrightarrow\left(5x-6y-3\right)^2+9\left(y-2\right)^2=0\)
Vì \(\left\{{}\begin{matrix}\left(5x-6y-3\right)^2\ge0\\9\left(y-2\right)^2\ge0\end{matrix}\right.\Rightarrow\left(5x-6y-3\right)^2+9\left(y-2\right)^2\ge0\)
Dấu ''='' xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}5x-6y-3=0\\y-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)
Vậy ...
= 100x4
10x^2 . 10x^2
= 100x^4