Giúp v...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

f(1)=a+b+c+d=0

=>x=1 là nghiệm nếu a+b+c+d=0

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

Dãy đã cho là dãy số liệu.

=> Em ủng hộ bạn Tròn.

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

Xét 2 tam giác ABC và MNP có:

AB=MN (gt)

\(\widehat {BAC} = \widehat {NMP}\) (gt)

AC=MP (gt)

Vậy \(\Delta ABC = \Delta MNP\)(c.g.c)

Bài 1:

Xét ΔBAK vuông tại A và ΔBHK vuông tại H có

BK chung

KA=KH

=>ΔBAK=ΔBHK

=>BA=BH

mà KA=KH

nên BK là trung trực của AH

=>BK vuông góc AH

18 tháng 9 2023

Em thấy bạn Vuông nói đúng

Để chứng minh điều này, ta có thể chỉ ra trường hợp 2 góc bằng nhau nhưng không đối đỉnh.

Ví dụ:

\(\widehat {{O_1}} = \widehat {{O_2}}\) nhưng hai góc này không đối đỉnh

a: Ta có: \(\hat{AOD}+\hat{BOD}=180^0\) (hai góc kề bù)

=>\(\hat{BOD}=180^0-97^0=83^0\)

Trên cùng một nửa mặt phẳng bờ chứa tia OA, ta có: \(\hat{AOE}<\hat{AOD}\left(56^0<97^0\right)\)

nên tia OE nằm giữa hai tia OA và OD

=>\(\hat{AOE}+\hat{EOD}=\hat{AOD}\)

=>\(\hat{EOD}=97^0-56^0=41^0\)

Ta có: \(\hat{AOE}+\hat{EOC}+\hat{COB}=180^0\)

=>\(\hat{EOC}=180^0-56^0-42^0=82^0\)

b: Trên cùng một nửa mặt phẳng bờ chứa tia OE, ta có; \(\hat{EOD}<\hat{EOC}\left(41^0<82^0\right)\)

nên tia OD nằm giữa hai tia OE và OC

=>\(\hat{EOD}+\hat{DOC}=\hat{EOC}\)

=>\(\hat{DOC}=82^0-41^0=41^0\)

Ta có: tia OD nằm giữa hai tia OE và OC

\(\hat{DOE}=\hat{DOC}\left(=41^0\right)\)

Do đó: OD là phân giác của góc EOC

25 tháng 1 2024

\(5x=3y\Rightarrow x=\dfrac{3y}{5}\)

Thay \(x=\dfrac{3y}{5}\) vào biểu thức \(x^2-y^2=-4\) ta có:

\(\left(\dfrac{3y}{5}\right)^2-y^2=-4\)

\(\dfrac{9y^2}{25}-y^2=-4\)

\(-\dfrac{16}{25}y^2=-4\)

\(y^2=-\dfrac{4}{\dfrac{-16}{25}}\)

\(y^2=\dfrac{25}{4}\)

\(\Rightarrow y=-\dfrac{5}{2};y=\dfrac{5}{2}\)

*) \(y=-\dfrac{5}{2}\Rightarrow x=\dfrac{3.\left(-\dfrac{5}{2}\right)}{5}=-\dfrac{3}{2}\)

*) \(y=\dfrac{5}{2}\Rightarrow x=\dfrac{3.\dfrac{5}{2}}{5}=\dfrac{3}{2}\)

Vậy ta được các cặp giá trị \(\left(x;y\right)\) thỏa mãn:

\(\left(-\dfrac{3}{2};-\dfrac{5}{2}\right);\left(\dfrac{3}{2};\dfrac{5}{2}\right)\)

9 tháng 1

ai biết gì đâu

AH
Akai Haruma
Giáo viên
31 tháng 1 2024

Lời giải:
Áp dụng tính chất tổng 3 góc trong một tam giác bằng $180^0$

a.

$x=180^0-80^0-45^0=55^0$

b.

$y=180^0-30^0-90^0=60^0$

c.

$z=180^0-30^0-25^0=125^0$