Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 3:
a: Số học sinh của lớp là:
4+15+20+10+1=50 bạn
\(\%Xs=\dfrac{4}{50}=8\%\)
%Tốt=15/50=30%
%Khá=20/50=40%
%Đạt=10/50=20%
%Chưa đạt=1/50=2%
b:
a: Xét ΔAHC vuông tại H và ΔEHC vuông tại H có
CH chung
HA=HE
=>ΔAHC=ΔEHC
b: Xét ΔAHM vuông tại H và ΔEHC vuông tại H có
HA=HE
góc HAM=góc HEC
=>ΔHAM=ΔHEC
=>HM=HC
=>H là trung điểm của MC
c: Xét tứ giác ACEM có
H là trung điểm chung của AE và MC
nên ACEM là hình bình hành
=>ME//AC
=>ME vuông góc với AB
Đặt \(\dfrac{x}{4}=\dfrac{y}{7}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=4k\\y=7k\end{matrix}\right.\)
Ta có: xy=112
\(\Leftrightarrow28k^2=112\)
\(\Leftrightarrow k^2=4\)
Trường hợp 1: k=2
\(\Leftrightarrow\left\{{}\begin{matrix}x=4k=4\cdot2=8\\y=7k=7\cdot2=14\end{matrix}\right.\)
Trường hợp 2: x=-2
\(\Leftrightarrow\left\{{}\begin{matrix}x=4k=-8\\y=7k=-14\end{matrix}\right.\)
Gọi số học sinh mỗi loại của khối 7 lần lượt là: \(a,b,c\left(a,b,c>0\right)\)
Áp dụng tc dtsbn:
\(\dfrac{a}{4}=\dfrac{b}{5}=\dfrac{c}{6}=\dfrac{a+b+c}{4+5+6}=\dfrac{120}{15}=8\)
\(=>\left\{{}\begin{matrix}a=32\left(hs\right)\\b=40\left(hs\right)\\c=48\left(hs\right)\end{matrix}\right.\)
Vậy...........
Lời giải:
Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
$|x+2020|+|x+2021|=|x+2020|+|-(x+2021)|$
$\geq |x+2020-(x+2021)|=1$
Vậy GTNN của biểu thức là $1$. Giá trị này đạt tại $(x+2020).-(x+2021)\geq 0$
$(x+2020)(x+2021)\leq 0$
$-2021\leq x\leq -2020$
Bài 4:
a: k=y/x=7/10
b: y=7/10x
c: Khi x=-6 thì y=-7/10*6=-42/10=-21/5
Khi x=1/7 thì y=1/7*7/10=1/10
Ta có :
\(A=\frac{\frac{3}{7}-\frac{3}{17}+\frac{3}{37}}{\frac{5}{7}-\frac{5}{17}+\frac{5}{37}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}}{\frac{7}{2}-\frac{7}{3}+\frac{7}{4}-\frac{7}{5}}\)
\(\Rightarrow A=\frac{3\left(\frac{1}{7}-\frac{1}{17}+\frac{1}{37}\right)}{5\left(\frac{1}{7}-\frac{1}{17}+\frac{1}{37}\right)}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}}{7\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}\right)}\)
\(\Rightarrow A=\frac{3}{5}+\frac{1}{7}=\frac{21}{35}+\frac{5}{35}=\frac{26}{35}\)
b) Ta có \(\frac{7}{3.6}+\frac{7}{6.9}+\frac{7}{9.12}+...+\frac{7}{66.69}=\frac{7}{3}.\left(\frac{3}{3.6}+\frac{3}{6.9}+\frac{3}{9.12}+...+\frac{3}{66.69}\right)\)
\(=\frac{7}{3}\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+...+\frac{1}{66}-\frac{1}{69}\right)\)
\(=\frac{7}{3}\left(\frac{1}{3}-\frac{1}{69}\right)=\frac{7}{3}.\frac{22}{69}=\frac{154}{207}\)
Lại có \(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{67.69}=\frac{5}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{67.69}\right)\)
\(=\frac{5}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{67}-\frac{1}{69}\right)\)
\(=\frac{5}{2}\left(1-\frac{1}{69}\right)=\frac{5}{2}.\frac{68}{69}=\frac{170}{69}\)
Khi đó B = \(\frac{154}{207}:\frac{170}{69}=\frac{154.69}{207.170}=\frac{77}{255}\)