Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{b-a}{4-3}=23\)
Do đó: a=69; b=92
\(5,\\ a,\left\{{}\begin{matrix}AB=CD\left(gt\right)\\AD=BC\left(gt\right)\\AC.chung\end{matrix}\right.\Rightarrow\Delta ABC=\Delta CDA\left(c.c.c\right)\\ b,\Delta ABC=\Delta CDA\left(cm.trên\right)\\ \Rightarrow\left\{{}\begin{matrix}\widehat{CAB}=\widehat{DCA}\\\widehat{CAD}=\widehat{ACB}\end{matrix}\right.\left(các.cặp.góc.tương.ứng\right)\)
Mà các cặp góc này ở vị trí so le trong nên \(AB//CD;AD//BC\)
2:
a: |x-2021|=x-2021
=>x-2021>=0
=>x>=2021
b: 5^x+5^x+2=650
=>5^x+5^x*25=650
=>5^x*26=650
=>5^x=25
=>x=2
c: Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{2x+3y-2-6}{2\cdot2+3\cdot3}=2\)
=>x-1=4 và y-2=6
=>x=5 và y=8
5:
a: Xét tứ giác ABKC có
M là trung điểm chung của AK và BC
=>ABKC là hình bình hành
=>góc ABK=180 độ-góc CAB=80 độ
b: ABKC là hình bình hành
=>góc ABK=góc ACK
góc DAE=360 độ-góc CAB-góc BAD-góc CAE
=180 độ-góc CAB=góc ACK
Xét ΔABK và ΔDAE có
AB=DA
góc ABK=góc DAE
BK=AE
=>ΔABK=ΔDAE
Do \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{b}{a}=\dfrac{d}{c}\)
\(\Rightarrow1-\dfrac{b}{a}=1-\dfrac{d}{c}\Rightarrow\dfrac{a-b}{a}=\dfrac{c-d}{c}\) (đpcm)
c. \(\left|\dfrac{8}{4}-\left|x-\dfrac{1}{4}\right|\right|-\dfrac{1}{2}=\dfrac{3}{4}\)
\(\Rightarrow\left[{}\begin{matrix}\left|\dfrac{8}{4}-x+\dfrac{1}{4}\right|-\dfrac{1}{2}=\dfrac{3}{4}\\\left|\dfrac{8}{4}+x-\dfrac{1}{4}\right|-\dfrac{1}{2}=\dfrac{3}{4}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left|\dfrac{9}{4}-x\right|-\dfrac{1}{2}=\dfrac{3}{4}\\\left|\dfrac{7}{4}+x\right|-\dfrac{1}{2}=\dfrac{3}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}\dfrac{9}{4}-x-\dfrac{1}{2}=\dfrac{3}{4}\\x=\dfrac{9}{4}-\dfrac{1}{2}=\dfrac{3}{4}\end{matrix}\right.\\\left[{}\begin{matrix}\dfrac{7}{4}+x-\dfrac{1}{2}=\dfrac{3}{4}\\-\dfrac{7}{4}-x-\dfrac{1}{2}=\dfrac{3}{4}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=1\\x=\dfrac{7}{2}\end{matrix}\right.\\\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=-3\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{7}{2}\\x=-3\end{matrix}\right.\)
Ở nơi x=9/4-1/2 là x-9/4-1/2 nha
a. -1,5 + 2x = 2,5
<=> 2x = 2,5 + 1,5
<=> 2x = 4
<=> x = 2
b. \(\dfrac{3}{2}\left(x+5\right)-\dfrac{1}{2}=\dfrac{4}{3}\)
<=> \(\dfrac{3}{2}x+\dfrac{15}{2}-\dfrac{1}{2}=\dfrac{4}{3}\)
<=> \(\dfrac{9x}{6}+\dfrac{45}{6}-\dfrac{3}{6}=\dfrac{8}{6}\)
<=> 9x + 45 - 3 = 8
<=> 9x = 8 + 3 - 45
<=> 9x = -34
<=> x = \(\dfrac{-34}{9}\)
\(b,\sqrt{36}.\sqrt{\dfrac{25}{26}}+\dfrac{1}{4}\\ =\sqrt{6^2}.\sqrt{\left(\dfrac{5}{4}\right)^2}+\dfrac{1}{4}\\=6.\dfrac{5}{4}+\dfrac{1}{4}=\dfrac{30}{4}+\dfrac{1}{4}=\dfrac{31}{4}\)
\(c,\sqrt{\dfrac{4}{81}}:\sqrt{\dfrac{25}{81}}-1\dfrac{2}{5}\\ =\sqrt{\left(\dfrac{2}{9}\right)^2}:\sqrt{\left(\dfrac{5}{9}\right)^2}-\dfrac{7}{5}\\ =\dfrac{2}{9}:\dfrac{5}{9}-\dfrac{7}{5}\\ =\dfrac{2}{9}.\dfrac{9}{5}-\dfrac{7}{5}=\dfrac{2}{5}-\dfrac{7}{5}\\ =-1\)
\(d, 0,1.\sqrt{225}.\sqrt{\dfrac{1}{4}}\\ =\dfrac{1}{10}.\sqrt{15^2}.\sqrt{\left(\dfrac{1}{2}\right)^2}\\ =\dfrac{1}{10}.15.\dfrac{1}{2}=\dfrac{3}{5}\)
\(e, \dfrac{3^{25}}{9^3.3^{16}}\\ =\dfrac{3^{25}}{\left(3^2\right)^3.3^{16}}\\ =\dfrac{3^{25}}{3^6.3^{16}}\\ =\dfrac{3^{25}}{3^{22}}\\ =3^3=27\)
\(a.720:\left(x-17\right)=12\)
\(x-17=60\)
\(x=77\)
\(b.\left(x-28\right):12=8\)
\(x-28=96\)
\(x=124\)
\(c.26+8x=6x+46\)
\(8x-6x=46-26\)
\(2x=20\)
\(x=10\)
\(d.3600:\left[\left(5x+335\right):x\right]=50\)
\(\left(5x+335\right):x=72\)
\(5+335:x=72\)
\(335:x=67\)
\(x=5\)
a) \(720:\left(x-17\right)=12\)
\(\Rightarrow x-17=\dfrac{720}{12}\)
\(\Rightarrow x-17=60\)
\(\Rightarrow x=60+17\)
\(\Rightarrow x=77\)
b) \(\left(x+28\right):12=8\)
\(\Rightarrow x+28=12\cdot8\)
\(\Rightarrow x+28=96\)
\(\Rightarrow x=96-28\)
\(\Rightarrow x=68\)
c) \(26+8x=6x+46\)
\(\Rightarrow8x-6x=46-26\)
\(\Rightarrow2x=20\)
\(\Rightarrow x=\dfrac{20}{2}\)
\(\Rightarrow x=10\)
d) \(3600:\left[\left(5x+335\right):x\right]=50\)
\(\Rightarrow\left(5x+335\right):x=\dfrac{3600}{50}\)
\(\Rightarrow\left(5x+335\right):x=72\)
\(\Rightarrow5x+335=72\cdot x\)
\(\Rightarrow72x-5x=335\)
\(\Rightarrow67x=335\)
\(\Rightarrow x=\dfrac{335}{67}\)
\(\Rightarrow x=5\)