Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(a,x^2-y^2-2x+2y=\left(x-y\right)\left(x+y\right)-2\left(x-y\right)=\left(x-y\right)\left(x+y-2\right)\)
\(b,2x+2y-x^2-xy=2\left(x+y\right)-x\left(x+y\right)=\left(2-x\right)\left(x+y\right)\)
\(c,3a^2-6ab+3b^2-12c^2=3\left(a-b\right)^2-12c^2=3\left[\left(a-b\right)^2-4c^2\right]=3\left(a-b-2c\right)\left(a-b+2c\right)\)
\(d,x^2-25+y^2+2xy=\left(x-y\right)^2-25=\left(x-y-5\right)\left(x-y+5\right)\)
Bài 1:
\(e,a^2+2ab+b^2-ac-bc=\left(a+b\right)^2-c\left(a+b\right)=\left(a+b-c\right)\left(a+b\right)\)
\(f,x^2-2x-4y^2-4y=\left(x-1\right)^2-\left(2y+1\right)^2=\left(x-2y-2\right)\left(x+2y\right)\)
\(g,x^2y-x^3-9y+9x=x^2\left(y-x\right)-9\left(y-x\right)=\left(x-3\right)\left(x+3\right)\left(y-x\right)\)
\(h,x^2\left(x-1\right)+16\left(1-x\right)=\left(x-1\right)\left(x-4\right)\left(x+4\right)\)
1) \(\left(x+\dfrac{1}{3}\right)^3=x^3+3.x^2.\dfrac{1}{3}+3.x.\left(\dfrac{1}{3}\right)^2+\left(\dfrac{1}{3}\right)^3\)
\(=x^3+x^2+\dfrac{x}{3}+\dfrac{1}{27}\)
2) \(\left(2x+y^2\right)^3=\left(2x\right)^3+3.\left(2x\right)^2.y^2+3.2x.\left(y^2\right)^2+\left(y^2\right)^3\)
\(=8x^3+12x^2y^2+6xy^4+y^6\)
3) \(\left(\dfrac{1}{2}x^2+\dfrac{1}{3}y\right)^3=\left(\dfrac{1}{2}x^2\right)^3+3.\left(\dfrac{1}{2}x^2\right)^2.\dfrac{1}{3}y+3.\dfrac{1}{2}x^2.\left(\dfrac{1}{3}y\right)^2+\left(\dfrac{1}{3}y\right)^3\)
\(=\dfrac{1}{8}x^6+\dfrac{1}{4}x^4y+\dfrac{1}{6}x^2y^2+\dfrac{1}{27}y^3\)
4) \(\left(3x^2-2y\right)^3=\left(3x^2\right)^3-3.\left(3x^2\right)^2.2y+3.3x^2.\left(2y\right)^2-\left(2y\right)^3\)
\(=27x^6-54x^4y+36x^2y^2-8y^3\)
5) \(\left(\dfrac{2}{3}x^2-\dfrac{1}{2}y\right)^3=\left(\dfrac{2}{3}x^2\right)^3-3.\left(\dfrac{2}{3}x^2\right)^2.\dfrac{1}{2}y+3.\dfrac{2}{3}x^2.\left(\dfrac{1}{2}y\right)^2-\left(\dfrac{1}{2}y\right)^3\)
\(=\dfrac{8}{27}x^6-\dfrac{1}{3}x^4y+\dfrac{1}{2}x^2y^2-\dfrac{1}{8}y^3\)
6) \(\left(2x+\dfrac{1}{2}\right)^3=\left(2x\right)^3+3.\left(2x\right)^2.\dfrac{1}{2}+3.2x.\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3\)
\(=8x^3+6x^2+\dfrac{3}{2}x+\dfrac{1}{8}\)
7) \(\left(x-3\right)^3=x^3-3.x^2.3+3.x.3^2-3^3\)
\(=x^3-9x^2+27x-27\)
8) \(\left(x+1\right)\left(x^2-x+1\right)\)
\(=\left(x+1\right)\left(x^2-x.1+1^2\right)\)
\(=x^3+1^3\)
\(=x+1\)
9) \(\left(x-3\right)\left(x^2+3x+9\right)\)
\(=\left(x-3\right)\left(x^2+x.3+3^2\right)\)
\(=x^3-3^3\)
\(=x^3-27\)
10) \(\left(x-2\right)\left(x^2+2x+4\right)\)
\(=\left(x-2\right)\left(x^2+x.2+2^2\right)\)
\(=x^3-2^3\)
\(=x^3-8\)
11) \(\left(x+4\right)\left(x^2-4x+16\right)\)
\(=\left(x+4\right)\left(x^2-x.4+4^2\right)\)
\(=x^3+4^3\)
\(=x^3+64\)
12) \(\left(x-3y\right)\left(x^2+3xy+9y^2\right)\)
\(=\left(x-3y\right)\left[x^2+x.3y+\left(3y\right)^2\right]\)
\(=x^3-\left(3y\right)^3\)
\(=x^3-27y^3\)
13) \(\left(x^2-\dfrac{1}{3}\right)\left(x^4+\dfrac{1}{3}x^2+\dfrac{1}{9}\right)\)
\(=\left(x^2-\dfrac{1}{3}\right)\left[\left(x^2\right)^2+x^2.\dfrac{1}{3}+\left(\dfrac{1}{3}\right)^2\right]\)
\(=\left(x^2\right)^3-\left(\dfrac{1}{3}\right)^3\)
\(=x^6-\dfrac{1}{27}\)
14) \(\left(\dfrac{1}{3}x+2y\right)\left(\dfrac{1}{9}x^2-\dfrac{2}{3}xy+4y^2\right)\)
\(=\left(\dfrac{1}{3}x+2y\right)\left[\left(\dfrac{1}{3}x\right)^2-\dfrac{1}{3}x.2y+\left(2y\right)^2\right]\)
\(=\left(\dfrac{1}{3}x\right)^3+\left(2y\right)^3\)
\(=\dfrac{1}{27}x^3+8y^3\)
Bài trên:
\(16x^3y+0,25yz^3=\dfrac{1}{4}y\left(64x^3+z^3\right)=\dfrac{1}{4}y\left[\left(4x\right)^3+z^3\right]\\ =\dfrac{1}{4}y\left[\left(4x+z\right)\left(16x^2-4xz+z^2\right)\right]\\ ----\\ x^4-4x^3+4x^2=x^2\left(x^2-4x+4\right)=x^2\left(x-2\right)^2\\ -----\\ a^3+a^2b-ab^2-b^3=\left(a^3-b^3\right)+\left(a^2b-ab^2\right)\\ =\left(a-b\right)\left(a^2+ab+b^2\right)+ab\left(a-b\right)=\left(a-b\right)\left(a^2+2ab+b^2\right)=\left(a-b\right)\left(a+b\right)^2\)
Bài trên
\(x^3+x^2-4x-4\\ =x^2\left(x+1\right)-4\left(x+1\right)\\ =\left(x^2-4\right)\left(x+1\right)\\ =\left(x-2\right)\left(x+2\right)\left(x+1\right)\\ ---\\ x^3-x^2-x+1\\ =x^2\left(x-1\right)-\left(x-1\right)\\ =\left(x^2-1\right)\left(x-1\right)\\ =\left(x-1\right)\left(x+1\right)\left(x-1\right)=\left(x-1\right)^2\left(x+1\right)\\ ---\\ x^4+x^3+x^2-1\\ =x^3\left(x+1\right)+\left(x-1\right)\left(x+1\right)\\ =\left(x^3+x-1\right)\left(x+1\right)\\ ---\\ x^2y^2+1-x^2-y^2\\ =x^2.\left(y^2-1\right)-\left(y^2-1\right)\\ =\left(y^2-1\right)\left(x^2-1\right)\\ =\left(y-1\right)\left(y+1\right)\left(x-1\right)\left(x+1\right)\)
Bài 1:
a: \(x^3-10x^2+25x\)
\(=x\left(x^2-10x+25\right)\)
\(=x\left(x-5\right)^2\)
b: \(3x-3y-x^2+2xy-y^2\)
\(=3\left(x-y\right)-\left(x-y\right)^2\)
\(=\left(x-y\right)\left(3-x+y\right)\)
c: \(x^3+x-y^3-y\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)+\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2+1\right)\)
\(M=\frac{a^6-1}{a^2-1}=\frac{\left(a^2\right)^3-1}{\left(a-1\right)\left(a+1\right)}=\frac{\left(a^2-1\right)\left[\left(a^2\right)^2+a^2\cdot1+1^1\right]}{\left(a-1\right)\left(a+1\right)}\)
\(M=\frac{\left(a-1\right)\left(a+1\right)\left(a^4+a^2+1\right)}{\left(a-1\right)\left(a+1\right)}=a^4+a^2+1\)
a:Xét tứ giác AIHK có
AI//HK
AK//HI
góc IAK=90 độ
Do đó: AIHK là hình chữ nhật
b: Để AHIK là hình vuông thì AI là phân giác của góc BAC
=>I là chân đường phân giác kẻ từ A xuống BC
a: Ta có: \(A=\left(2x-1\right)^2+\left(2x-2\right)^3+\left(2x+3\right)^3\)
\(=8x^3-12x^2+6x-1+8x^3-16x^2+16x-8+\left(2x+3\right)^3\)
\(=16x^3-28x^2+22x-9+8x^3+36x^2+54x+27\)
\(=24x^3+8x^2+76x+18\)
\(A=8x^3-12x^2+6x-1+8x^3-24x^2+24x-8+8x^3+36x^2+54x+27\\ A=24x^3+84x^2+18\\ D=x^3-3x^2+3x-1+x^3-6x^2+12x-8-x^3+9x^2-27x+27\\ D=x^3-12x+18\)
1) \(=\left(9x^2-25y^2\right)-\left(6x-10y\right)=\left(3x-5y\right)\left(3x+5y\right)-2\left(3x-5y\right)=\left(3x-5y\right)\left(3x+5y-2\right)\)
2) \(=9x^2y^2-\left(x^2-2xy+y^2\right)=9x^2y^2-\left(x-y\right)^2=\left(3xy-x+y\right)\left(3xy+x-y\right)\)
\(ĐKXĐ:x\ne0;x\ne2\)
\(\frac{4x^2-4x^3+x^4}{x^3-2x^2}=-2\)
\(\Leftrightarrow4x^2-4x^3+x^4=-2\left(x^3-2x^2\right)\)
\(\Leftrightarrow4x^2-4x^3+x^4=-2x^3+4x^2\)
\(\Leftrightarrow x^4-2x^3=0\Leftrightarrow x^3\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\left(ktm\right)\)
Vậy không có x để phân thức bằng -2
Ta có : \(\frac{4x^2-4x^3+x^4}{x^3-2x^2}=-2\)
( ĐKXĐ : \(x\ne0,x\ne\pm\sqrt{2}\) )
\(\Leftrightarrow\frac{4x^2-4x^3+x^4}{x^3-2x^2}+2=0\)
\(\Leftrightarrow4x^2-4x^3+x^4+2\left(x^3-2x^2\right)=0\)
\(\Leftrightarrow-2x^3+x^4=0\)
\(\Leftrightarrow x^3\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\) ( Loại \(x=0\) không thỏa mãn ĐKXĐ )
Vậy : \(x=2\) thỏa mãn đề.