Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\left|5x-4\right|\ge6\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-4\ge6\\5x-4\le-6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge2\\x\le-\dfrac{2}{5}\end{matrix}\right.\)
a) <=> (5x - 2)2 ≥ 62 <=> (5x – 4)2 – 62 ≥ 0
<=> (5x - 4 + 6)(5x - 4 - 6) ≥ 0 <=> (5x + 2)(5x - 10) ≥ 0
Bảng xét dấu:
Từ bảng xét dấu cho tập nghiệm của bất phương trình:
T = ∪ [2; +∞).
b) <=>
<=>
<=>
<=>
Tập nghiệm của bất phương trình T = (-∞; - 5) ∪ (- 1; 1) ∪ (1; +∞).
e: =>-3<5x-12<3
=>9<5x<15
=>9/5<x<3
f: =>3x+15>=3 hoặc 3x+15<=-3
=>3x>=-12 hoặc 3x<=-18
=>x<=-6 hoặc x>=-4
b: =>(2x-7)(x-5)<=0
=>7/2<=x<=5
|x - 6| < x2 - 5x + 9 (1)
Xét 2 trường hợp:
* Với x - 6 \(\ge0\) => x \(\ge6\) , (1) trở thành: x - 6 < x2 - 5x + 9 => x2 - 6x + 15 > 0
Có: pt x2 - 6x + 15 có \(\Delta<0\) => x2 - 6x + 15 > 0 với mọi x thuộc R
=> S1 = [6 ; +\(\infty\))
* Với x - 6 < 0 => x < 6 , (1) trở thành: 6 - x < x2 - 5x + 9 => x2 - 4x + 3 > 0
Lập bảng xét dấu:
x | \(-\infty\) 1 3 \(+\infty\) |
x2 - 4x + 3 | + 0 - 0 + |
=> x2 - 4x + 3 > 0 khi x \(\in\) (-\(\infty\); 1) \(\cup\) (3 ; +\(\infty\))
=> S2 = (- \(\infty\); 1) \(\cup\) (3 ; 6)
Vậy S = S1 \(\cup\) S2 = (- \(\infty\) ; 1) \(\cup\)(3 ; 6]
$a)\frac{2x}{2x^{2}-5x+3}+\frac{13x}{2x^{2}+x+3}=6$ (1)
Nhận thấy x=0 ko phải nghiệm của phương trình
Chia cả tử và mẫu của mỗi phân thức cho x, ta được:
$\frac{2}{2x-5+\frac{3}{x}}+\frac{13}{2x+1+\frac{3}{x}}=6$
Đặt $2x+\frac{3}{x}$=t
=> (1) <=> $\frac{2}{t-5}+\frac{13}{t+1}=6$
<=> $2t^{2}-13t+11=0$
Có a+b+c=2-13+11=0
=> $t_{1}=1$
$t_{2}=\frac{c}{a}=\frac{11}{2}$
* t = 1
=> $2x+\frac{3}{x}=1$
<=> $2x^{2}-x+3=0$ (vô nghiệm)
* t = $\frac{11}{2}$
=> $2x+\frac{3}{x}=\frac{11}{2}$
<=> $4x^{2}-11x+6=0$
=> $x_{1}=\frac{3}{4}$
$x_{2}=2$
Vậy phương trình có tập nghiệm S={$\frac{3}{4};2$}
b, \(x^2+\left(\dfrac{x}{x-1}\right)^2=1\)
\(\Leftrightarrow\left[x^2+\left(\dfrac{x}{x-1}\right)^2+2.x.\dfrac{x}{x-1}\right]-2.\dfrac{x^2}{x-1}-1=0\)
\(\Leftrightarrow\left(x+\dfrac{x}{x-1}\right)^2-2.\dfrac{x^2}{x-1}-1=0\)
\(\Leftrightarrow\left(\dfrac{x\left(x-1\right)+x}{x-1}\right)^2-2.\dfrac{x^2}{x-1}-1=0\)
\(\Leftrightarrow\left(\dfrac{x^2}{x-1}\right)^2-2.\dfrac{x^2}{x-1}-1=0\) (1)
Đặt : \(\dfrac{x^2}{x-1}=t\) (*) thì phương trình (1) trở thành:
\(t^2-2t-1=0\)
Ta có: \(\Delta=8>0\)
\(\Rightarrow t_1=\dfrac{2-\sqrt{8}}{2}=\dfrac{2-2\sqrt{2}}{2}=1-\sqrt{2}\)
\(t_2=\dfrac{2+\sqrt{8}}{2}=\dfrac{2+2\sqrt{2}}{2}=1+\sqrt{2}\)
Thay vào (*) rồi tìm x là xong
=.= hk tốt!!
a) ĐKXĐ: 2x + 3 ≥ 0. Bình phương hai vế thì được:
(3x – 2)2 = (2x + 3)2 => (3x - 2)2 – (2x + 3)2 = 0
⇔ (3x -2 + 2x + 3)(3x – 2 – 2x – 3) = 0
=> x1 = (nhận), x2 = 5 (nhận)
Tập nghiệm S = {; 5}.
b) Bình phương hai vế:
(2x – 1)2 = (5x + 2)2 => (2x - 1 + 5x + 2)(2x – 1 – 5x – 2) = 0
=> x1 = , x2 = -1.
c) ĐKXĐ: x ≠ , x ≠ -1. Quy đồng rồi khử mẫu thức chung
(x – 1)|x + 1| = (2x – 3)(-3x + 1)
- Với x ≥ -1 ta được: x2 – 1 = -6x2 + 11x – 3 => x1 = ;
x2 = . - Với x < -1 ta được: -x2 + 1 = -6x2 + 11x – 3 => x1 = (loại vì không thỏa mãn đk x < -1); x2 = (loại vì x > -1)
Kết luận: Tập nghiệm S = {; }
d) ĐKXĐ: x2 +5x +1 > 0
- Với x ≥ ta được: 2x + 5 = x2 + 5x + 1
=> x1 = -4 (loại); x2 = 1 (nhận) - Với x < ta được: -2x – 5 = x2 + 5x + 1
=> x1 =-6 (nhận); x2 = -1 (loại).
Kết luận: Tập nghiệm S = {1; -6}.
|3x+4)/(x-2)| <=3
<=>|3 +10/(x-2) | <=3
10/(x-2) =t
<=> |3+t| <=3
9 +6t +t^2 <=9 <=> -6<=t <=0
10/(x-2) <=0 => x<2
10/(x-2) >=-6 <=>5/(x-2)>=-3
<=>5 <=-3(x-2) <=>3x <=10-5 =5 => x <=5/3
kết luận x<= 5/3
a) \(\left|\frac{3x+4}{x-2}\right|< =3̸\) đk: x\(\ne\) 2
BPT \(\Leftrightarrow\) \(\left\{{}\begin{matrix}\frac{3x+4}{x-2}\ge-3\\\frac{3x+4}{x-2}\le3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\frac{3x+4}{x-2}+3\ge0\\\frac{3x+4}{x-2}-3\le0\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}\frac{6x-2}{x-2}\ge0\\\frac{10}{x-2}\le0\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}\left[{}\begin{matrix}x\le\frac{1}{3}\\x>2\end{matrix}\right.\\x< 2\end{matrix}\right.\Rightarrow}x\le\frac{1}{3}}\)
b) \(\left|\frac{2x-1}{x-3}\right|\ge1\) đk: x\(\ne\) 3
BPT \(\Leftrightarrow\left[{}\begin{matrix}\frac{2x-3}{x-3}\le-1\\\frac{2x-3}{x-3}\ge1\end{matrix}\right.\)
ta có:
+) \(\frac{2x-3}{x-3}\le-1\Leftrightarrow\frac{2x-3}{x-3}+1\le0\Leftrightarrow\frac{3x-6}{x-3}\le0\Leftrightarrow2\le x< 3\)
+) \(\frac{2x-3}{x-3}\ge1\Leftrightarrow\frac{2x-3}{x-3}-1\ge0\Leftrightarrow\frac{x}{x-3}\ge0\Leftrightarrow\left[{}\begin{matrix}x\le0\\x>3\end{matrix}\right.\)
vậy tập nghiệm là: \((-\infty;0]\cup[2;3)\cup(3;+\infty)\)