\(\widehat{A}\)<\(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2016

bn ui cko mjk hỏi K thuộc BC hay AB??

níu AB thì mjk lm dc hihi

28 tháng 12 2016

Hình bạn tự vẽ được không ?

Xét \(\Delta KBC\)và \(\Delta HCB\)

\(\widehat{BKC}=\widehat{CHB}=90^o\)

Chung cạnh BC

\(\widehat{KBC}=\widehat{HCB}\)( tam giác ABC cân tại A)

Do đó \(\Delta KBC=\Delta HCB\) ( cạnh huyền - góc nhọn )

Suy ra KB = HC ( 2 cạnh tương ứng )

Mà AB = AC

AB - KB = AC - HC 

AH = AK

Vậy ....

19 tháng 5 2017

Xét tam giác AKC và tam giác AHB có :

Góc A chung

AC = AB (tam giác ABC đều) 

=> Tam giác AKC = Tam giác AHB

=> AK = AH

Ta có :

BH là đường cao của AC

CK là đường cao của AB 

Mà 2 đường cắt nhau tại I

=> AI cũng là đường cao của BC

Mặt khác , tam giác ABC cân tại A

=> AI là đường cao và cũng là đường phân giác

19 tháng 5 2017

Xét tam giác AHB và AKC có :

Góc h = k = 90 độ

ab = ac ( tam giac abc cân )

chung góc  a

=> tam giác AHB = AKC ( ch - gnh )

=>  ah = ak ( 2 cạnh tương ứng ) 

Xét tam giác aki và ahi có : 

k = h ( = 90 độ )

ah = ak

ai chung 

=> tam giác aki = ahi ( ch - cgv )

=> góc kai = hai 

=> ai la phan giac

a) Hai tam giác vuông ABH và ACK có:

AB = AC(gt)

Góc A chung.

nên ∆ABH = ∆ACK(Cạnh huyền- Góc nhọn)

suy ra AH = AK.

b) Hai tam giác vuông AIK và AIH có:

AK = AH(cmt)

AI cạnh chung

Nên ∆AIK = ∆AIH(cạnh huyền- cạnh góc vuông)

Suy ra ˆIAKIAK^=ˆIAHIAH^

Vậy AI là tia phân giác của góc A.

20 tháng 4 2017

a) Hai tam giác vuông ABH và ACH có:

Tam giác ABC cân tại A ⇒ AB = AC

AH cạnh chung.

Nên ∆ABH = ∆ACH(Cạnh huyền – cạnh góc vuông)

Suy ra HB = HC

b)∆ABH = ∆ACH (Câu a)

Suy ra ∠BAH = ∠CAH (Hai góc tương ứng)

20 tháng 2 2018

Hình như đề bài sai thì phải. Theo đề bài trên thì BH trùng với AB; CK trùng với AC

20 tháng 2 2018

đề bài ko sai đâu

Bài 1: 

a: XétΔABE và ΔACD có

AB=AC

\(\widehat{BAE}\) chung

AE=AD

Do đó: ΔABE=ΔACD

Suy ra: BE=CD

b: Xét ΔDBC và ΔECB có 

DB=EC

BC chung

DC=EB

Do đó: ΔDBC=ΔECB

Suy ra: \(\widehat{KDB}=\widehat{KEC}\)

Xét ΔKDB và ΔKEC có 

\(\widehat{KDB}=\widehat{KEC}\)

BD=CE

\(\widehat{KBD}=\widehat{KCE}\)

Do đó: ΔKDB=ΔKEC

15 tháng 4 2020

Câu 1:

Xét tam giác AMB và tam giác AMC ta có:

        AB = AC (tam giác ABC cân tại A)

        ABM = ACM (tam giác ABC cân tại A)

=> Tam giác AMB = tam giác AMC (ch-gn) (dpcm)

15 tháng 4 2020

Câu 2:

a) Ta có: +) AK+KB = AB => KB = AB-AK

               +) AH+HC = AC => HC = AC-AH

Mà AB=AC(tam giác ABC cân tại A) ; AK=AH (gt)

=>KB=HC

Xét tam giác BHC và tam giác CKB ta có:

          HC=KB (cmt)

          HCB=KBC (tam giác ABC cân tại A)

          BC là cạnh chung

=>tam giác BHC = tam giác CKB (c.g.c)

=>BH=CK (2 cạnh tương ứng)     (dpcm)

Xét tam giác ABH và tam giác ACK ta có:

        AB=AC (tam giác ABC cân tại A)

        BH=CK (cmt)

        AH=AK (gt)

=> tam giác ABH = tam giác ACK (c.c.c)

=> ABH = ACK (2 góc tương ứng) (dpcm)

b) Theo a) tam giác BHC= tam giác CKB

=> HBC=KCB (2 góc tương ứng) hay OBC=OCB

=> Tam giác OBC là tam giác cân tại O (dpcm)

c) Theo b tam giác OBC cân tại O => OB=OC

    Theo a góc ABH = góc ACK => KBO= HCO

Xét tam giác OKB và tam giác OHC ta có:

      KB=HC (theo a)

      KBO=HCO (cmt)

      OB=OC (cmt)

=> tam giác OKB = tam giác OHC (c.g.c)

=> OK = OH (2 cạnh tương ứng) hay tam giác OKH là tam giác cân tại O (dpcm)

d) Gọi giao điểm của AO và KH là I

Xét tam giác AKO và tam giác AHO ta có:

        AK=AH (gt)

        AO là cạnh chung

        OK=OH (theo c)

=> tam giác AKO = tam giác AHO (c.c.c)

=> KAO = HAO (2 góc tương ứng)   hay KAI=HAI

Xét tam giác KAI và tam giác HAI ta có:

          AK=AH (gt)

          KAI=HAI (cmt)

          AI là cạnh chung

=> tam giác KAI = tam giác HAI ( c.g.c)

=> KI=HI ,   mà I nằm giữa H và K

=> I là trung điểm của KH hay

AO đi qua trung điểm của KH (dpcm)

15 tháng 4 2018

WOA  nhìn tên bạn là hết muốn làm luôn í

31 tháng 1 2018

A B C I H K

a)

_ Xét \(\Delta\) AKC và \(\Delta\) AHI có :

+ góc AKC = gócÂHB = 90o

+ A là góc chung

+ AB = AC ( gt )

=> \(\Delta\)AHB = \(\Delta\) AKC ( g.c.g)

=> AH = AK ( đpcm )

b)

_ Xét \(\Delta\) AKI và \(\Delta\) AHI có

+ góc AKI = góc AHI = 900

+ AH = AK ( c/m trên )

+ AI là cạnh chung

=> \(\Delta\) AKI = \(\Delta\) AHI ( cạnh huyền - cạnh góc vuông )

=> góc KAI = gócHAI ( 2 góc tương ứng )

c)

_ Xét \(\Delta\) ABD và \(\Delta\) ACD có :

+ AB = AC ( gt )

+ AD chung

+ góc ADB = góc ACD = 90o

=> \(\Delta\)ABD = \(\Delta\) ACD ( cạnh huyền - cạnh góc vuông )

=> AI \(\perp\) BC

Còn lại k biết lm