Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
48.
Gọi O là giao của Ax với BC. Xét tg ABO có
\(\widehat{OAB}=\widehat{xAO}-\widehat{xAB}=180^o-140^o=40^o\)
\(\widehat{OBA}=\widehat{CBO}-\widehat{ABC}=180^o-70^o=110^o\)
\(\Rightarrow\widehat{AOB}=180^o-\left(\widehat{OAB}+\widehat{OBA}\right)=180^o-\left(40^o+110^o\right)=30^o\)
\(\Rightarrow\widehat{yCB}+\widehat{AOB}=150^o+30^o=180^o\) hai góc này nằm ở vị trí 2 góc trong cùng phía và bù nhau => Ax//Cy
49.
Nối A với C. Xét tg ABC có
\(\widehat{BAC}+\widehat{BCA}+\widehat{B}=180^o\)
Ta có
\(\widehat{A}+\widehat{B}+\widehat{C}=360^o\)
\(\Rightarrow\widehat{xAC}+\widehat{BAC}+\widehat{B}+\widehat{yCA}+\widehat{BCA}=360^o\)
\(\Rightarrow\left(\widehat{xAC}+\widehat{yCA}\right)+\left(\widehat{BAC}+\widehat{BCA}+\widehat{B}\right)=360^o\)
\(\Rightarrow\widehat{xAC}+\widehat{yCA}=360^o-\left(\widehat{BAC}+\widehat{BCA}+\widehat{B}\right)=\)
\(=360^o-180^o=180^o\)
Hai góc \(\widehat{xAC}\) và \(\widehat{yCA}\) ở vị trí 2 góc trong cùng phía và bù nhau
=> Ax//Cy
\(1+\frac{1}{2}.\left(1+2\right)+\frac{1}{3}.\left(1+2+3\right)+...+\frac{1}{x}.\left(1+2+3+...+x\right)=115\)
\(\Rightarrow1.\left(\frac{1.2}{2}\right)+\frac{1}{2}.\left(\frac{2.3}{2}\right)+\frac{1}{3}.\left(\frac{3.4}{2}\right)+....+\frac{1}{x}.\left[\frac{x\left(x+1\right)}{2}\right]=115\)
\(\Rightarrow\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+....+\frac{x+1}{2}=115\Rightarrow2+3+...+\left(x+1\right)=230\)
\(\frac{\Rightarrow\left[\frac{\left(x+1-2\right)}{1}+1\right].\left(x+1+2\right)}{2}=\frac{x.\left(x+3\right)}{2}=230\Rightarrow x.\left(x+3\right)=460\)
vì x và x+3 là 2 số tự nhiên cách nhau 3 đơn vị => \(x.\left(x+3\right)=460=20.23\Rightarrow x=20\)
Vậy x=20
b:a=2 và c:b=3 \(\Rightarrow\) a = \(\frac{b}{2}\) và c = 3b
\(\frac{\left(\frac{b}{2}+b\right)}{\left(3b+b\right)}=\frac{\frac{b}{2}+\frac{2b}{2}}{b\left(3+1\right)}=\frac{\frac{b\left(2+1\right)}{2}}{4b}=\frac{\frac{3}{2}}{4}\)
\(=\frac{3}{2}\times\frac{1}{4}=\frac{3}{8}\)
Áp dụng TC DTSBN ta có :
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{\left(b+c\right)+\left(c+a\right)+\left(a+b\right)}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
Bài 4
c) \(\frac{x}{8}=\frac{y}{2}=\frac{z}{9}=\frac{x+y+z}{8+2+9}=\frac{38}{19}=2\)
\(x=16;\text{ }y=4;\text{ }z=18\)
HT nha bạn