Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : x2 - 2x - 3m2 = 0
Tại m = 1 thì pt trở thành :
x2 - 2x - 3.12 = 0
<=> x2 - 2x - 3 = 0
<=> x2 - 3x + x - 3= 0
<=> x(x - 3) + (x - 3) = 0
<=> (x - 3)(x + 1) = 0
<=> \(\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}}\)
các bạn giải hộ mình với
giải theo hệ thức Vi-et,biết S=2 và P=m-1
\(\frac{2-x1}{x1}+\frac{2-x2}{x2}\)
sửa cho dễ nhìn :Cho dg thẳng (d):y=mx+10 và (P):y=\(x^2\).Tìm tất cả các giá trị của m để \(\left|x_1\right|>\left|x_2\right|\) với \(x_1< x_2\)
bài làm
Theo pt hoành độ hoành độ giao điểm của (d) và (P) ta có
\(x^2=mx+10\)
⇔\(x^2-mx-10=0\)
\(\Delta=\left(-m\right)^2-4\cdot\left(-10\right)=m^2+40>0\)(với mọi m)
Theo định lí Vi-ét ta có
\(x_1+x_2=m\)
\(x_1x_2=10\)
Ta có \(\left|x_1\right|>\left|x_2\right|\)
⇔\(\left(\sqrt{x_1}\right)^2>\left(\sqrt{x_2}\right)^2\)
⇔\(\left(\sqrt{x_1}\right)^2-\left(\sqrt{x_2}\right)^2>0\)
⇔\(\left(\sqrt{x_1}-\sqrt{x_2}\right)\left(\sqrt{x_1}+\sqrt{x_2}\right)>0\)
⇔\(\left(\sqrt{x_1-2\sqrt{x_1x_2}+x_2}\right)\left(\sqrt{x_1+2\sqrt{x_1x_2}+x_2}\right)>0\)
⇔\(\left(\sqrt{10-2m}\right)\left(\sqrt{10+2m}\right)>0\)
⇔\(\sqrt{\left(10-2m\right)\left(10+2m\right)}>0\)
⇔\(\left(10-2m\right)\left(10+2m\right)>0\)
⇔\(\left[{}\begin{matrix}\left\{{}\begin{matrix}10-2m>0\\10+2m>0\end{matrix}\right.\\\left\{{}\begin{matrix}10-2m< 0\\10+2m< 0\end{matrix}\right.\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}\left\{{}\begin{matrix}m< 5\\m>-5\end{matrix}\right.\\\left\{{}\begin{matrix}m>5\\m< -5\end{matrix}\right.\end{matrix}\right.\)
⇒-5<m<5
Vậy -5<m<5
\(|x_1|>|x_2|\) thì tương đương với $x_1^2>x_2^2$ em nhé.
Không có cơ sở để khẳng định $x_1,x_2$ dương để viết $\sqrt{x_1}, \sqrt{x_2}$
| x1 - x2 | ≥ 2
=> ( x1 - x2 )2 ≥ 4
<=> x12 - 2x1x2 + x22 ≥ 4
<=> ( x1 + x2 )2 - 4x1x2 ≥ 4
<=> m2 + 2m + 1 - 4m ≥ 4
<=> m2 - 2m - 3 ≥ 0
<=> ( m + 1 )( m - 3 ) ≥ 0
đến đây dễ rồi