K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2021

| x1 - x2 | ≥ 2

=> ( x1 - x2 )2 ≥ 4

<=> x12 - 2x1x2 + x22 ≥ 4

<=> ( x1 + x2 )2 - 4x1x2 ≥ 4

<=> m2 + 2m + 1 - 4m ≥ 4

<=> m2 - 2m - 3 ≥ 0

<=> ( m + 1 )( m - 3 ) ≥ 0

đến đây dễ rồi 

Ta có : x2 - 2x - 3m2 = 0 

Tại m = 1 thì pt trở thành : 

x2 - 2x - 3.1= 0 

<=> x2 - 2x - 3 = 0 

<=> x2 - 3x + x - 3= 0 

<=> x(x - 3) + (x - 3) = 0 

<=> (x - 3)(x + 1) = 0 

<=> \(\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}}\)

24 tháng 5 2021

sửa cho dễ nhìn :Cho dg thẳng (d):y=mx+10 và (P):y=\(x^2\).Tìm tất cả các giá trị của m để \(\left|x_1\right|>\left|x_2\right|\) với \(x_1< x_2\)

bài làm

Theo pt hoành độ hoành độ giao điểm của (d) và (P) ta có

\(x^2=mx+10\)

\(x^2-mx-10=0\)

\(\Delta=\left(-m\right)^2-4\cdot\left(-10\right)=m^2+40>0\)(với mọi m)

Theo định lí Vi-ét ta có

\(x_1+x_2=m\)

\(x_1x_2=10\)

Ta có \(\left|x_1\right|>\left|x_2\right|\)

\(\left(\sqrt{x_1}\right)^2>\left(\sqrt{x_2}\right)^2\)

\(\left(\sqrt{x_1}\right)^2-\left(\sqrt{x_2}\right)^2>0\)

\(\left(\sqrt{x_1}-\sqrt{x_2}\right)\left(\sqrt{x_1}+\sqrt{x_2}\right)>0\)

\(\left(\sqrt{x_1-2\sqrt{x_1x_2}+x_2}\right)\left(\sqrt{x_1+2\sqrt{x_1x_2}+x_2}\right)>0\)

\(\left(\sqrt{10-2m}\right)\left(\sqrt{10+2m}\right)>0\)

\(\sqrt{\left(10-2m\right)\left(10+2m\right)}>0\)

\(\left(10-2m\right)\left(10+2m\right)>0\)

\(\left[{}\begin{matrix}\left\{{}\begin{matrix}10-2m>0\\10+2m>0\end{matrix}\right.\\\left\{{}\begin{matrix}10-2m< 0\\10+2m< 0\end{matrix}\right.\end{matrix}\right.\)

\(\left[{}\begin{matrix}\left\{{}\begin{matrix}m< 5\\m>-5\end{matrix}\right.\\\left\{{}\begin{matrix}m>5\\m< -5\end{matrix}\right.\end{matrix}\right.\)

⇒-5<m<5

Vậy -5<m<5

 

 

 

 

AH
Akai Haruma
Giáo viên
24 tháng 5 2021

\(|x_1|>|x_2|\) thì tương đương với $x_1^2>x_2^2$ em nhé. 

Không có cơ sở để khẳng định $x_1,x_2$ dương để viết $\sqrt{x_1}, \sqrt{x_2}$