Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng tỏ rằng đa thức \(x^{2008}-x^{2007}+1\) vô nghiệm hay gì vậy ạ :v?
Ta có : \(2^{20}=\left(2^5\right)^4=32^4\)
\(3^{12}=\left(3^3\right)^4=27^4\)
Lại có: \(27< 32\Rightarrow27^4< 32^4\)
\(\Rightarrow3^{12}< 2^{20}\)
Vậy\(3^{12}< 2^{20}\)
ta có \(3^{12}=\left(3^3\right)^4=27^4\)
mà \(2^{20}=\left(2^5\right)^4=32^4\)
vì 27<32 => \(27^4< 32^4\)
=> \(3^{12}< 2^{20}\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x-\dfrac{3}{5}>\dfrac{2}{5}\\\dfrac{1}{2}x-\dfrac{3}{5}< -\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x>1\\\dfrac{1}{2}x< \dfrac{1}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>2\\x< \dfrac{2}{5}\end{matrix}\right.\)
Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay BC=13(cm)
Xét ΔABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC
nên \(AM=\dfrac{BC}{2}=6.5\left(cm\right)\)
👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍