Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Vận tốc cano khi dòng nước lặng là: $25-2=23$ (km/h)
Bài 2:
Đổi 1 giờ 48 phút = 1,8 giờ
Độ dài quãng đường AB: $1,8\times 25=45$ (km)
Vận tốc ngược dòng là: $25-2,5-2,5=20$ (km/h)
Cano ngược dòng từ B về A hết:
$45:20=2,25$ giờ = 2 giờ 15 phút.
Bài 1:
a.
$a^3-a^2c+a^2b-abc=a^2(a-c)+ab(a-c)$
$=(a-c)(a^2+ab)=(a-c)a(a+b)=a(a-c)(a+b)$
b.
$(x^2+1)^2-4x^2=(x^2+1)^2-(2x)^2=(x^2+1-2x)(x^2+1+2x)$
$=(x-1)^2(x+1)^2$
c.
$x^2-10x-9y^2+25=(x^2-10x+25)-9y^2$
$=(x-5)^2-(3y)^2=(x-5-3y)(x-5+3y)$
d.
$4x^2-36x+56=4(x^2-9x+14)=4(x^2-2x-7x+14)$
$=4[x(x-2)-7(x-2)]=4(x-2)(x-7)$
Bài 2:
a. $(3x+4)^2-(3x-1)(3x+1)=49$
$\Leftrightarrow (3x+4)^2-[(3x)^2-1]=49$
$\Leftrightarrow (3x+4)^2-(3x)^2=48$
$\Leftrightarrow (3x+4-3x)(3x+4+3x)=48$
$\Leftrightarrow 4(6x+4)=48$
$\Leftrightarrow 6x+4=12$
$\Leftrightarrow 6x=8$
$\Leftrightarrow x=\frac{4}{3}$
b. $x^2-4x+4=9(x-2)$
$\Leftrightarrow (x-2)^2=9(x-2)$
$\Leftrightarrow (x-2)(x-2-9)=0$
$\Leftrightarrow (x-2)(x-11)=0$
$\Leftrightarrow x-2=0$ hoặc $x-11=0$
$\Leftrightarrow x=2$ hoặc $x=11$
c.
$x^2-25=3x-15$
$\Leftrightarrow (x-5)(x+5)=3(x-5)$
$\Leftrightarrow (x-5)(x+5-3)=0$
$\Leftrightarrow (x-5)(x+2)=0$
$\Leftrightarrow x-5=0$ hoặc $x+2=0$
$\Leftrightarrow x=5$ hoặc $x=-2$
Bài 4 :
\(M=\left(2x-3y\right)^2-\left(3y-2\right)\left(3y+2\right)-\left(1-2x\right)^2+4x\left(3y-1\right)\)
\(=\left(2x-3y-1+2x\right)\left(2x-3y+1-2x\right)-9y^2+4+12xy-4x\)
\(=\left(4x-3y-1\right)\left(1-3y\right)-9y^2+4+12xy-4x\)
\(=4x-12xy-3y+9y^2-1+3y-9y^2+4+12xy-4x=3\)
Vậy biểu thức ko phụ thuộc giá trị biến x
Bài 2 :
a, \(\left(a-3b\right)^2=a^2-6ab+9b^2\)
b, \(x^2-16y^4=\left(x-4y^2\right)\left(x+4y^2\right)\)
c, \(25a^2-\frac{1}{4}b^2=\left(5a-\frac{1}{2}b\right)\left(5a+\frac{1}{2}b\right)\)
Bài 3 :
a, \(9x^2-6x+1=\left(3x-1\right)^2\)
b, \(\left(2x+3y\right)^2+2\left(2x+3y\right)+1=\left(2x+3y+1\right)^2\)
c, \(4\left(2x-y\right)^2-8x+4y+1=\left(4x-2y\right)^2-2\left(4x-2y\right)+1=\left(4x-2y-1\right)^2\)
Áp dụng phương pháp hệ số bất định ta có
x4-6x3+12x2-14x+3
= (x2+ax+b)(x2+cx+d)
= x4 + (a+c)x3+(ac+b+d)x2+(ad+bc)x+bd
Đồng nhất đa thức trên với đề bài ta có
\(\left[{}\begin{matrix}a+c=-6\\ac+b+d=12\\ad+bc=-14\\bd=3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}a=-2\\b=3\\c=-4\\d=1\end{matrix}\right.\)
Thế a,b,c,d ta được
x4-6x3+12x2-14x+3
= (x2+ax+b)(x2+cx+d)
= (x2-2x+3)(x2-4x+1)
Bài 2
1/ \(\dfrac{x-342}{15}+\dfrac{x-323}{17}+\dfrac{x-300}{19}+\dfrac{x-273}{21}=10\)
\(\Leftrightarrow\dfrac{x-342}{15}-1+\dfrac{x-323}{17}-2+\dfrac{x-300}{19}-3+\dfrac{x-273}{21}-4=0\)\(\Leftrightarrow\dfrac{x-357}{15}+\dfrac{x-357}{17}+\dfrac{x-357}{19}+\dfrac{x-357}{21}=0\)
\(\Leftrightarrow\left(x-357\right)\left(\dfrac{1}{15}+\dfrac{1}{17}+\dfrac{1}{19}+\dfrac{1}{21}\right)=0\)
Mà \(\dfrac{1}{15}+\dfrac{1}{17}+\dfrac{1}{19}+\dfrac{1}{21}>0\)
\(\Rightarrow x-357=0\Leftrightarrow x=357\)
2/ Ta có: \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)
\(\Leftrightarrow x^2+y^2+z^2-xy-yz-zx\ge0\)
\(\Leftrightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)
\(\Leftrightarrow\dfrac{\left(x+y+z\right)^2}{3}\ge xy+yz+zx\)
\(\Leftrightarrow xy+yz+zx\le3\)
\(\Rightarrow\) GTLN của B là 3
Dấu ''='' xảy ra khi và chỉ khi \(x=y=z=1\)
Câu 4:
a: ĐKXĐ: \(x\notin\left\{0;-5\right\}\)
b: \(A=\dfrac{x^2+2x}{2\left(x+5\right)}+\dfrac{x-5}{x}+\dfrac{50-5x}{2x\left(x+5\right)}\)
\(=\dfrac{x^3+2x^2}{2x\left(x+5\right)}+\dfrac{2\left(x^2-25\right)}{2x\left(x+5\right)}+\dfrac{50-5x}{2x\left(x+5\right)}\)
\(=\dfrac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}\)
\(=\dfrac{x^3+4x^2-5x}{2x\left(x+5\right)}=\dfrac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}\)
\(=\dfrac{x\left(x+5\right)\left(x-1\right)}{2x\left(x+5\right)}=\dfrac{x-1}{2}\)
c: Để A=-3 thì x-1=-6
hay x=-5(loại)
Điều kiện:
\(x-1\ne0\Rightarrow x\ne1\)
\(x^3+x\ne0\Leftrightarrow x\ne0\)
a: Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
=>\(BH=CH=\dfrac{6}{2}=3\left(cm\right)\)
ΔAHB vuông tại H
=>\(HA^2+HB^2=AB^2\)
=>\(HA^2=5^2-3^2=16\)
=>\(HA=\sqrt{16}=4\left(cm\right)\)
b: Xét ΔAHB có HE là phân giác
nên \(\dfrac{AE}{EB}=\dfrac{AH}{HB}=\dfrac{4}{3}\)(1)
=>\(\dfrac{AE}{4}=\dfrac{EB}{3}\)
mà AE+EB=AB=5cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AE}{4}=\dfrac{EB}{3}=\dfrac{AE+EB}{4+3}=\dfrac{5}{7}\)
=>\(AE=\dfrac{5}{7}\cdot4=\dfrac{20}{7}\left(cm\right)\)
c: Xét ΔAHC có HF là phân giác
nên \(\dfrac{AF}{FC}=\dfrac{AH}{HC}=\dfrac{4}{3}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{AE}{EB}=\dfrac{AF}{FC}\)
Xét ΔABC có \(\dfrac{AE}{EB}=\dfrac{AF}{FC}\)
nên EF//BC
Ta có: EF//BC
BC\(\perp\)AH
Do đó: EF\(\perp\)AH
d: Xét ΔAHB vuông tại H có HE là đường cao
nên \(HE\cdot AB=HA\cdot HB\)
=>\(HE\cdot5=3\cdot4=12\)
=>\(HE=\dfrac{12}{5}=2,4\left(cm\right)\)
Xét ΔABC có EF//BC
nên \(\dfrac{EF}{BC}=\dfrac{AE}{AB}\)
=>\(\dfrac{EF}{6}=\dfrac{20}{7}:5=\dfrac{4}{7}\)
=>\(EF=\dfrac{24}{7}\left(cm\right)\)