Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Từ B kẻ đường vuông góc với BC cắt AC tại E
tam giác BEC vuông tại B có \(AB=AC\Rightarrow A\) là trung điểm CE
Vì tam giác ABC cân tại A có AH là đường cao \(\Rightarrow H\) là trung điểm BC
\(\Rightarrow AH\) là đường trung bình tam giác BEC
\(\Rightarrow AH=\dfrac{1}{2}BE\Rightarrow2AH=BE\Rightarrow4AH^2=BE^2\)
tam giác BEC vuông tại B có BK là đường cao \(\Rightarrow\dfrac{1}{BE^2}+\dfrac{1}{BC^2}=\dfrac{1}{BK^2}\)
\(\Rightarrow\dfrac{1}{4AH^2}+\dfrac{1}{BC^2}=\dfrac{1}{BK^2}\)
mình không biết đã làm đúng chưa nên mong bạn thông cảm nha
a: góc BDC=180-60=120 độ
góc BOC=2*góc BAC=120 độ
góc BAD=góc CAD=60/2=30 độ
=>góc BOD=góc COD=60 độ
góc BOD=1/2*góc BOC
=>OD là phân giác của góc BOC
Xét ΔOBD có OB=OD và góc BOD=60 độ
nên ΔOBD đều
=>góc OBD=60 độ
Xét ΔOCD có OD=OC và góc DOC=60 độ
=>ΔOCD đều
=>góc OCD=60 độ
Xét tứ giác BOCD có
góc BOC=góc BDC
góc OBD=góc OCD
OB=OC
=>BOCD là hình thoi
b:
góc IBC+góc ICB=1/2(góc ABC+góc ACB)=1/2*120=60 độ
=>góc BIC=120 độ
góc BOC=góc BIC=120 độ
=>BOIC nội tiếp
Từ D kẻ đường vuông góc DK (K thuộc AB) \(\Rightarrow CDKH\) là hình chữ nhật
\(\Rightarrow\left\{{}\begin{matrix}HK=CD=3,5\left(m\right)\\CH=DK=5\left(m\right)\end{matrix}\right.\)
Ta có:\(\widehat{KDA}=135^0-90^0=45^0\)
Trong tam giác vuông BCH:
\(cos\widehat{BCH}=\dfrac{CH}{BC}\Rightarrow BC=\dfrac{CH}{cos\widehat{BCH}}=\dfrac{5}{cos30^0}=\dfrac{10\sqrt{3}}{3}\left(m\right)\)
\(\Rightarrow BH=\sqrt{BC^2-CH^2}=\dfrac{5\sqrt{3}}{3}\left(m\right)\)
Trong tam giác vuông ADK:
\(\widehat{KAD}=90^0-\widehat{KDA}=45^0\Rightarrow\widehat{KAD}=\widehat{KDA}\Rightarrow\Delta ADK\) vuông cân tại K
\(\Rightarrow AK=DK=5\left(m\right)\)
\(\Rightarrow AD=\sqrt{AK^2+DK^2}=5\sqrt{2}\left(m\right)\)
\(AB=BH+HK+KA=\dfrac{51+10\sqrt{3}}{6}\left(m\right)\)
Chu vi: \(AB+CD+BC+AD\approx27,7\left(m\right)\)
Diện tích: \(S=\dfrac{1}{2}\left(AB+CD\right).CH\approx37,2\left(m^2\right)\)
\(=\left(\dfrac{\sqrt{5}\left(\sqrt{3}-2\right)}{\sqrt{3}-2}+\dfrac{\sqrt{6}\left(\sqrt{3}+\sqrt{2}\right)}{\sqrt{3}+\sqrt{2}}-\dfrac{\sqrt{6}-\sqrt{5}}{\left(\sqrt{6}-\sqrt{5}\right)\left(\sqrt{6}+\sqrt{5}\right)}\right):\sqrt{\dfrac{5}{2}}\)
\(=\left(\sqrt{5}+\sqrt{6}-\sqrt{6}+\sqrt{5}\right):\dfrac{\sqrt{5}}{\sqrt{2}}\)
\(=2\sqrt{5}.\dfrac{\sqrt{2}}{\sqrt{5}}=2\sqrt{2}\)
a) Ta có: \(\left(\dfrac{\sqrt{15}-\sqrt{20}}{\sqrt{3}-2}+\dfrac{3\sqrt{2}+2\sqrt{3}}{\sqrt{3}+\sqrt{2}}-\dfrac{1}{\sqrt{6}+\sqrt{5}}\right):\sqrt{\dfrac{5}{2}}\)
\(=\left(\sqrt{5}+\sqrt{6}-\sqrt{6}+\sqrt{5}\right):\dfrac{\sqrt{10}}{2}\)
\(=2\sqrt{5}\cdot\dfrac{2}{\sqrt{10}}=2\sqrt{2}\)
2:
a: góc BEC=góc BDC=90 độ
=>BEDC nội tiếp
b: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
góc DAB chung
=>ΔADB đồng dạng với ΔAEC
=>AD/AE=AB/AC
=>AD*AC=AB*AE
c: góc ABF=góc ACF=1/2*sđ cung AF=90 độ
=>BF//CH và CF//BH
=>BFCH là hình bình hành