Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
D E G M N H N P Q
Xét 4 tam giác: \(\Delta\)DQM,\(\Delta\)ENM,\(\Delta\)HNP,\(\Delta\)GQP lần lượt vuông tại:D,E,H,G:
DM=ME=HP=GP
QD=EN=NH=QG
=> \(\Delta\)DQM=\(\Delta\)ENM=\(\Delta\)HNP=\(\Delta\)GQP(hai cạnh góc vuông)
=>QM=MN=NP=QP( các cạnh tương ứng)
=> tứ giác MNPQ là hình thoi.
Đề số 3.
1.
a,\(4x\left(5x^2-2x+3\right)\)
\(=20x^3-8x^2+12x\)
b.\(\left(x-2\right)\left(x^2-3x+5\right)\)
\(=x^3-3x^2+5x-2x^2+6x-10\)
\(=x^3-5x^2+11x-10\)
c,\(\left(10x^4-5x^3+3x^2\right):5x^2\)
\(=2x^2-x+\dfrac{3}{5}\)
d,\(\left(x^2-12xy+36y^2\right):\left(x-6y\right)\)
\(=\left(x-6y\right)^2:\left(x-6y\right)\)
\(=x-6y\)
2.
a,\(x^2+5x+5xy+25y\)
\(=\left(x^2+5x\right)+\left(5xy+25y\right)\)
\(=x\left(x+5\right)+5y\left(x+5\right)\)
\(=\left(x+5y\right)\left(x+5\right)\)
b,\(x^2-y^2+14x+49\)
\(=\left(x^2+14x+49\right)-y^2\)
\(=\left(x+7\right)^2-y^2\)
\(=\left(x+7-y\right)\left(x+7+y\right)\)
c,\(x^2-24x-25\)
\(=x^2+25x-x-25\)
\(=\left(x^2-x\right)+\left(25x-25\right)\)
\(=x\left(x-1\right)+25\left(x-1\right)\)
\(=\left(x+25\right)\left(x-1\right)\)
3.
a,\(5x\left(x-3\right)-x+3=0\)
\(5x\left(x-3\right)-\left(x-3\right)=0\)
\(\left(5x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-1=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}5x=1\\x=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=3\end{matrix}\right.\)
Vậy \(x=\dfrac{1}{5}\) hoặc \(x=3\)
b.\(3x\left(x-5\right)-\left(x-1\right)\left(2+3x\right)=30\)
\(3x^2-15x-\left(2x+3x^2-2-3x\right)=30\)
\(3x^2-15x-2x-3x^2+2+3x=30\)
\(-14x+2=30\)
\(-14x=28\)
\(x=-2\)
c,\(\left(x+2\right)\left(x+3\right)-\left(x-2\right)\left(x+5\right)=0\)
\(x^2+3x+2x+6-\left(x^2+5x-2x-10\right)=0\)
\(x^2+5x+6-x^2-5x+2x+10=0\)
\(2x+16=0\)
\(2x=-16\)
\(x=-8\)
Mình học chật hình không giúp bạn được.Xin lỗi!
a: Xét ΔACB và ΔEBC có
\(\widehat{ACB}=\widehat{EBC}\)
BC chung
\(\widehat{CBA}=\widehat{BCE}\)
Do đó:ΔACB=ΔEBC
b: ta có; ΔACB=ΔEBC
nên AC=EB
=>BE=BD
hay ΔBED cân tại B
c: Ta có: ΔBED cân tại B
nên \(\widehat{BDC}=\widehat{BEC}\)
=>\(\widehat{BDC}=\widehat{ACD}\)
1.
a. \(6x^4-9x^3=3x^3\left(2x-3\right)\)
b. \(x^2y^2z+xy^2z^2+x^2yz^2=xyz\left(xy+yz+xz\right)\)
d. \(2x\left(x+3\right)+2\left(x+3\right)=\left(x+3\right)\left(2x+2\right)=2\left(x+3\right)\left(x+1\right)\)
2b. \(4x\left(x+1\right)=8\left(x+1\right)\Leftrightarrow4x\left(x+1\right)-8\left(x+1\right)=0\Leftrightarrow\left(x+1\right)\left(4x-8\right)=0\Leftrightarrow4\left(x+1\right)\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)
Vậy ...
2d. \(x\left(x-4\right)+\left(x-4\right)^2=0\Leftrightarrow\left(x-4\right)\left(x+x-4\right)=0\Leftrightarrow2\left(x-4\right)\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)
Vậy ...
3
Có\(S_{GCBH}=a^2\)
\(S_{CDEA}=b^2\)
\(S_{BAKI}=c^{^2}\)
Áp dụng định lý Py ta go vào tam giác ABC
\(BC^{^2}=AB^2+AC^2\) hay \(a^2=b^2+c^2\)
Vậy Đpcm
23.27. \(x^2-y^2-2x+1\)
\(=\left(x-1\right)^2-y^2\)
\(=\left(x-1-y\right)\left(x-1+y\right)\)
23.25.
\(\left(x^2-4x\right)^2+\left(x-2\right)^2-10\)
\(=\left(x^2-4x\right)^2-4+\left(x-2\right)^2-6\)
\(=\left(x^2-4x+4\right)\left(x^2-4x-4\right)+x^2-4x+4-6\)
\(=\left(x^2-4x+4\right)\left(x^2-4x-10\right)\)
23.23
\(x^3-2x^2-6x+27\)
\(=\left(x^3+27\right)-2x\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2-3x+9-2x\right)\)
\(=\left(x+3\right)\left(x^2-5x+9\right)\)
Bài 4:
a) (2x)2-2.2x.(3/2)+(3/2)2=(2x-3/2)2
b) 4(x2+2x+1)-12x-3=4x2-4x+1=(2x)2-2.2x.1+12=(2x-1)2
c) (5x)2-2.5x.2y+(2y)2=(5x-2y)2
Bài 5:
a) (x+3)3
b)[ \(\left[\left(\sqrt{3}x\right)+2\right]^3\)]
c) (3x+31)3
d) \(\left[x+\sqrt{2}y\right]^3\)
Ta có: góc D = B
mà 2 góc này ở vị trí so le trong
=> ED//BC
Ta lại có: AH vuông góc BC
=> AH vuông góc ED
Hay AK vuông góc ED
Tam giác AKD vuông tại K
=> AD2 = AK2 + DK2
=> AD2 = 42 + 32
=> AD = 5 ( cm)
Mà: \(AD=\dfrac{1}{3}AB\Rightarrow AB=5.3=15\) cm
Xét tam giác AKD và tam giác AHB có:
góc KAD = HAB ( đối đỉnh)
góc AKD = AHB = 90o
Do đó: tam giác AKD~AHB( g.g)
=> \(\dfrac{AD}{AB}=\dfrac{DK}{BH}\Rightarrow BH=\dfrac{AB.DK}{AD}=\dfrac{15.3}{5}=9\)