K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2020

câu 1:

a,diện tích hcn đó là:5x8=40cm2

b,diện tích hình bình hành đó là:1/2x6x(5+9)=42cm2

8 tháng 6 2021

a, Xét ΔABC và ΔHBA có:

∠BAC chung, ∠BHA=∠BAC (=90o)

=> ΔABC ∼ ΔHBA (g.g)

b, Áp dụng đ/l Pitago vào △ABC ta có:

BC2=AB2+AC2 => BC=√(62+82)=10 (cm)

Ta có: SABC=\(\dfrac{1}{2}\)AB.AC=\(\dfrac{1}{2}\)AH.BC

=> 6.8=AH.10 => AH=4,8 (cm)

c, Xét △HAB và △HCA có:

∠BHA=∠CHA (=90o), ∠ABC=∠HAC (cùng phụ ∠BCA)

=> △HAB ∼ △HCA (g.g)

=> \(\dfrac{AB}{AC}=\dfrac{\text{△HAB}}{\text{△HCA}}\)=\(\dfrac{6}{8}\)=\(\dfrac{3}{4}\)

d, AD là đường p/g của △ABC => \(\dfrac{AB}{BD}=\dfrac{AC}{DC}\)=\(\dfrac{AB+AC}{BD+DC}=\dfrac{14}{10}=\dfrac{7}{5}\)

=> \(\dfrac{AB}{BD}=\dfrac{7}{5}\) => \(\dfrac{6}{BD}=\dfrac{7}{5}\) => BD=\(\dfrac{30}{7}\) (cm)

=> \(\dfrac{AC}{DC}\)\(=\dfrac{7}{5}\) => \(\dfrac{8}{DC}=\dfrac{7}{5}\) => DC=\(\dfrac{40}{7}\) (cm)

 

a: BC=10cm

Xét ΔABC có AD là phân giác

nên BD/CD=AB/AC=3/4

=>BD/3=CD/4

Áp dụng tính chất của dãy tỉ số bằng nhau,ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{10}{7}\)

Do đó: BD=30/7(cm); CD=40/7(cm)

b: Xét ΔABC có DE//AC

nên DE/AC=BD/BC

=>\(\dfrac{DE}{8}=\dfrac{30}{7}:10=\dfrac{3}{7}\)

=>DE=24/7(cm)

21 tháng 3 2023

a.

• áp dụng định lí pytago trong tam giác ABC vuông tại A, ta có :

BC^2 = AC^2 + AB^2 

BC^2 = 3^2 + 4^2

BC^2 = 9 + 16

BC^2 = 25

BC = căn bậc 2 của 25

BC = 5 ( cm )

vậy BC = 5 cm

• diện tích của tam giác ABC là :

3 . 4 : 2 = 6 ( cm^2 )

vậy diện tích của tam giác ABC là 6 cm^2

b. xét tam giác HBA và tam giác HAC, ta có :

góc HBA = góc HAC ( hai góc kề bù )

góc A là góc chung ( gt )

do đó: tam giác HBA và tam giác HAC là hai tam giác đồng dạng ( g - g )

c. HA/HB = HC/HA ( cmt )

=> HA^2 = HB . HC

d. vì BD = 1/2BC ( t/chất của đường phân giác trong tam giác vuông )

nên BD = 1/2 . 5 = 2,5 ( cm )

mà BD = DC = 1/2BC

=> DC = 2,5 ( cm )

vậy BC , DC = 2,5 cm

a: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

AH=3*4/5=2,4cm

BH=3^2/5=1.8cm

\(S_{BCA}=\dfrac{1}{2}\cdot3\cdot4=6\left(cm^2\right)\)

b Xét ΔHBA vuông tại H và ΔHAC vuông tại H co

góc HBA=góc HAC

=>ΔHBA đồng dạng với ΔHAC

c: ΔHBA đồng dạng với ΔHAC

=>HB/HA=HA/HC

=>HA^2=HB*HC

d: ΔABC có AD là phân giác

=>BD/AB=CD/AC

=>BD/3=CD/4=(BD+CD)/(3+4)=5/7

=>BD=15/7cm; CD=20/7cm

19 tháng 3 2022

undefinedhình vẽ

19 tháng 3 2022

undefinedcâu a)