Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. x(x-5) -4x+20=0
<=> x(x-5) - 4(x-5)=0
<=> (x-5)(x-4)=0
<=>(x-5)=0 hoặc x-4=0
<=> x=5 hoặc x=4
Vậy x={4;5}
b.tương tự
c. x3-5x2+x-5 =0
<=> x2(x-5) + (x-5) = 0
<=> (x-5) (x2+1) = 0
<=> x-5=0 hoặc x2+1=0(loại vì x2=-1)
<=> x=5
vậy x=5
d. bạn kiểm tra lại đề
Tìm x :
a) \(x\left(x-5\right)-4x+20=0\)
\(\Leftrightarrow x^2-5x-4x+20=0\)
\(\Leftrightarrow\left(x^2-5x\right)-\left(4x-20\right)=0\)
\(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)
b) \(x\left(x+6\right)-7x-42=0\)
\(\Leftrightarrow x^2+6x-7x-42=0\)
\(\Leftrightarrow\left(x^2+6x\right)-\left(7x+42\right)=0\)
\(\Leftrightarrow x\left(x+6\right)-7\left(x+6\right)=0\)
\(\Leftrightarrow\left(x-7\right)\left(x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-7=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-6\end{matrix}\right.\)
c) \(x^3-5x^2+x-5=0\)
\(\Leftrightarrow\left(x^3-5x^2\right)+\left(x-5\right)=0\)
\(\Leftrightarrow x^2\left(x-5\right)+\left(x-5\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+1=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(vôlí\right)\\x=5\end{matrix}\right.\)
\(x^2-5x-4\left(x-5\right)=0\)
\(\Leftrightarrow\)\(x\left(x-5\right)-4\left(x-5\right)=0\)
\(\Leftrightarrow\)\(\left(x-5\right)\left(x-4\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-5=0\\x-4=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=5\\x=4\end{cases}}\)
Vậy....
\(2x\left(x+6\right)=7x+42\)
\(\Leftrightarrow\)\(2x\left(x+6\right)-7x-42=0\)
\(\Leftrightarrow\)\(2x\left(x+6\right)-7\left(x+6\right)=0\)
\(\Leftrightarrow\)\(\left(x+6\right)\left(2x-7\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x+6=0\\2x-7=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-6\\x=\frac{7}{2}\end{cases}}\)
Vậy......
\(x^3-5x^2+x-5=0\)
\(\Leftrightarrow\)\(x^2\left(x-5\right)+\left(x-5\right)=0\)
\(\Leftrightarrow\)\(\left(x-5\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\)\(x-5=0\)
\(\Leftrightarrow\)\(x=5\)
\(x^4-2x^3+10x^2-20x=0\)
\(\Leftrightarrow\)\(x^3\left(x-2\right)+10x\left(x-2\right)=0\)
\(\Leftrightarrow\)\(x\left(x-2\right)\left(x^2+10\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
Vậy...
\(\left(x+1\right)^2=x+1\)
\(\left(x+1\right)^2-\left(x+1\right)=0\)
\(\left(x+1\right)\left(x+1-1\right)=0\)
\(\left(x+1\right)x=0\)
\(\orbr{\begin{cases}x+1=0\\x=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-1\\x=0\end{cases}}\)vậy.....
\(x\left(x-5\right)^2-4x+20=0\)
\(x\left(x-5\right)^2-4\left(x-5\right)=0\)
\(\left(x-5\right)\left[x\left(x-5\right)-4\right]=0\)
\(\left(x-5\right)\left(x^2-5x-4\right)=0\)
\(\orbr{\begin{cases}x-5=0\\x^2-5x-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=-0,7015621187\end{cases}}}\)vậy.........
\(x\left(x+6\right)-7x-42=0\)
\(x\left(x+6\right)-7\left(x+6\right)=0\)
\(\left(x+6\right)\left(x-7\right)=0\)
\(\orbr{\begin{cases}x+6=0\\x-7=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-6\\x=7\end{cases}}}\) vậy....
\(x^3-5x^2+x-5=0\)
\(x^2\left(x-5\right)+\left(x-5\right)=0\)
\(\left(x-5\right)\left(x^2+1\right)=0\)
\(\orbr{\begin{cases}x-5=0\\x^2+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x^2=-1\Rightarrow x\in\Phi\end{cases}}}\)vậy........
\(x^4-2x^3+10x^2-20x=0\)
\(x^3\left(x-2\right)+10x\left(x-2\right)=0\)
\(\left(x-2\right)\left(x^3+10x\right)=0\)
\(\orbr{\begin{cases}x-2=0\\x^3+10x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}}\)vậy..............
nhớ chọn mk nha
Bạn đăng nhiều quá nhưng mình chỉ biết phần \(\text{phân tích đa thức thành nhân tử}\) thôi
\(x^2+2x-3\)
\(\text{phân tích đa thức thành nhân tử}\)
\(\left(x-1\right)\left(x+3\right)\)
\(x^2-10x+9\)
\(\text{phân tích đa thức thành nhân tử}\)
\(\left(x-9\right)\left(x-1\right)\)
\(x^2-2x-15\)
\(\text{phân tích đa thức thành nhân tử}\)
\(\left(x-5\right)\left(x+3\right)\)
\(x^2-2x-48\)
\(\text{phân tích đa thức thành nhân tử}\)
\(\left(x-8\right)\left(x+6\right)\)
\(x^2-10x+24\)
\(\text{phân tích đa thức thành nhân tử}\)
\(\left(x-6\right)\left(x-4\right)\)
\(4x^2+4x-15\)
\(\text{phân tích đa thức thành nhân tử}\)
\(\left(2x-3\right)\left(2x+5\right)\)
\(3x^2-7x+2\)
\(\text{phân tích đa thức thành nhân tử}\)
\(\left(x-2\right)\left(3x-1\right)\)
\(4x^2-5x+1\)
\(\text{phân tích đa thức thành nhân tử}\)
\(\left(x-1\right)\left(4x-1\right)\)
Bài 1: CMR các đa thức sau luôn dương vs mọi giá trị biến số:
a) x^2 + x +1
b) x^2 + 3x+3
c) x^2 + y^2 + 2(x-2y) +6
d) 2x^2 + y^2 + 2x( y-1) +2
Bài 2: Phân tích thành nhân tử:
a) x^2 + 2x-3
b) x^2 - 10x +9
c) x^2 - 2x -15
d) x^2 - 2x -48
e) x^2 - 10x+24
f)4x^2 + 4x -15
g) 3x^2 - 7x +2
h) 4x^2 - 5x +1
Bài 3: Tìm x biết :
a) x^2 +5x+6=0
b) x^2 - 10x + 16=0
c) x^2 - 10x +21=0
d) x^2 - 2x -3 =0
e) 2x^2 + 7x +3=0
f) x^2 - x- 6=0
Bài 4:
a)x^3 + 2x^2 - 3=0
b) x^3 - 7x -6=0
c) x^3 + x^2 +4=0
d) x^3 - 2x^2 - x+2 =0
Bạn đăng nhiều quá nhưng mình chỉ biết phần phân tích đa thức thành nhân tử thôi
x2+2x−3
phân tích đa thức thành nhân tử
(x−1)(x+3)
x2−10x+9
phân tích đa thức thành nhân tử
(x−9)(x−1)
x2−2x−15
phân tích đa thức thành nhân tử
(x−5)(x+3)
x2−2x−48
phân tích đa thức thành nhân tử
(x−8)(x+6)
x2−10x+24
phân tích đa thức thành nhân tử
(x−6)(x−4)
4x2+4x−15
phân tích đa thức thành nhân tử
(2x−3)(2x+5)
3x2−7x+2
phân tích đa thức thành nhân tử
(x−2)(3x−1)
4x2−5x+1
phân tích đa thức thành nhân tử
(x−1)(4x−1)
dài quá !
a) \(x\left(x-5\right)-4x+20=0\)
\(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4\\x=5\end{cases}}\)
Vậy tập nghiệm của pt là \(S=\left\{4;5\right\}\)
b) \(x\left(x+6\right)-7x-42=0\)
\(\Leftrightarrow x\left(x+6\right)-7\left(x+6\right)=0\)
\(\Leftrightarrow\left(x-7\right)\left(x+6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-7=0\\x+6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=7\\x=-6\end{cases}}\)
Vậy tập nghiệm của pt là \(S=\left\{-6;7\right\}\)
Tìm x, biết:
a) \(x\left(x-5\right)-4x+20=0\)
\(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=4\end{matrix}\right.\)
Vậy \(x=5\) hoặc \(x=4\)
b) \(x\left(x+6\right)-7x-42=0\)
\(\Leftrightarrow x\left(x+6\right)-7\left(x+6\right)=0\)
\(\Leftrightarrow\left(x+6\right)\left(x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+6=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=7\end{matrix}\right.\)
Vậy \(x=-6\) hoặc \(x=7\)
c) \(x^3-5x^2+x-5=0\)
\(\Leftrightarrow\left(x^3-5x^2\right)+\left(x-5\right)=0\)
\(\Leftrightarrow x^2\left(x-5\right)+\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x^2+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x^2=-1\left(loại\right)\end{matrix}\right.\)
Vậy \(x=5\)
d) \(x^4-2x^3+10x^2-20x=0\)
\(\Leftrightarrow\left(x^4-2x^3\right)+\left(10x^2-20x\right)=0\)
\(\Leftrightarrow x^3\left(x-2\right)+10x\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3+10x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x^3+10x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)
Vậy \(x=2\) hoặc \(x=0\)