Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
V kế 3V - Nđ 3V;1,5V
V kế 5V- nguồn 3v,1,5v
V kế 9v - nguồn 3v,6v
V kế 15v - nguồn 12v
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE
Suy ra: BD=CE
b: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
EC=DB
Do đó:ΔEBC=ΔDCB
Suy ra: \(\widehat{KCB}=\widehat{KBC}\)
hay ΔKBC cân tại K
d: Xét ΔABK và ΔACK có
AB=AC
BK=CK
AK chung
Do đó: ΔABK=ΔACK
Suy ra: \(\widehat{BAK}=\widehat{CAK}\)
hay AK là tia phân giác của góc BAC
Ta có: \(A=\left(-7\right)+\left(-7\right)^2+\left(-7\right)^3+...+\left(-7\right)^{200}\)
\(\Rightarrow\) \(\left(-7\right)A=\left(-7\right)^2+\left(-7\right)^3+\left(-7\right)^4+...+\left(-7\right)^{201}\)
\(\Rightarrow\)\(A-\left(-7\right)A=8A=\left(-7\right)-\left(-7\right)^{201}\)
\(\Rightarrow\) \(A=\frac{\left(-7\right)-\left(-7\right)^{201}}{8}=\frac{\left(-7\right)+7^{201}}{8}\)
A=(-7)+(-7)^2+...+(-7)^200
7a=-[7^2+7^3+...+7^201]
7a-a=-[(7^2+7^3+...+7^201)-(7+7^2+...+7^200)]
6a=-(7^2+7^3+...+7^201-7-7^2+...+7^200)
6a=-(7^201-7)
a=-\(\frac{-\left(7^{201}-7\right)}{6}\)
-Giúp nhiều bài thế bạn, chẳng lẽ bạn không biết làm bài nào á?
\(\left|2x^2-27\right|^{2019}+\left(5y+12\right)^{2018}=0.\)
\(\text{Ta có}\hept{\begin{cases}\left|2x^2-27\right|^{2019}\ge0\\\left(5y+12\right)^{2018}\ge0\end{cases}}\text{Mà}\left|2x^2-27\right|^{2019}+\left(5y+12\right)^{2018}=0\)
\(\Rightarrow\hept{\begin{cases}\left|2x^2-27\right|^{2019}=0\\\left(5y+12\right)^{2018}=0\end{cases}\Rightarrow\orbr{\begin{cases}\left(2x-27\right)^{2019}=0\\\left(5y+12\right)^{2018}=0\end{cases}\Rightarrow\orbr{\begin{cases}2x-27=0\\5y+12=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=27\\5y=-12\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{27}{2}\\y=\frac{-12}{5}\end{cases}}}}}}\)
\(\text{Vậy}\hept{\begin{cases}x=\frac{27}{2}\\y=\frac{-12}{5}\end{cases}}\)
a: Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7\cdot b^2k^2+3\cdot bk\cdot b}{11\cdot b^2k^2-8\cdot b^2}=\dfrac{b^2k\left(7k+3\right)}{b^2\left(11k^2-8\right)}=\dfrac{k\left(7k+3\right)}{11k^2-8}\)
\(\dfrac{7c^2+3cd}{11c^2-8d^2}=\dfrac{7\cdot d^2k^2+3\cdot dk\cdot d}{11\cdot d^2k^2-8d^2}=\dfrac{k\left(7k+3\right)}{11k^2-8}\)
Do đó: \(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)
c: \(\dfrac{3a+2c}{3b+2d}=\dfrac{3bk+2dk}{3b+2d}=k\)
\(\dfrac{a}{b}=\dfrac{bk}{b}=k\)
Do đó: \(\dfrac{a}{b}=\dfrac{3a+2c}{3b+2d}\)
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
lm giúp mk câu d vs nha