Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
E = \(\frac{\left(2^2\right)^6.\left(3^2\right) ^5+\left(2.3\right)^9.2^3.3.5}{-\left(2^3\right)^4.3^{12}-\left(2.3\right)^{11}}\)
E = \(\frac{2^{12}.3^{10}+2^9.3^9.2^3.3.5}{-2^{12}.3^{12}-2^{11}.3^{11}}\)
E = \(\frac{2^{12}.3^{10}+2^{13}.3^{10}.5}{-2^{11}.3^{11}.\left(2.3+1\right)}\)
E = \(\frac{2^{12}.3^{10}.\left(1+5\right)}{-2^{11}.3^{11}.7}\)
E = \(\frac{2^{12}.3^{10}.6}{-2^{11}.3^{11}.7}\)
E=\(\frac{-2^{11}.\left(-2\right).3^{10}.6}{-2^{11}.3^{10}.3.7}\)
E = \(\frac{-2.6}{3.7}=-\frac{4}{7}\)
Vậy E = -4/7
Ý F bn lm tương tự nha
\(\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}=\frac{2^{12}.3^{10}+3^{10}.2^{12}.5}{2^{12}.3^{12}-2^{11}.3^{11}}=\frac{2^{12}.3^{10}.6}{6^{12}-6^{11}}=\frac{2^{12}.3^{10}.6}{6^{11}\left(6-1\right)}=\frac{2^{10}.3^{10}\left(2^2+1\right).6}{6^{11}.5}=\frac{6^{11}.5}{6^{11}.5}=1\)
Ta có : \(A=\frac{4^6.9^5+6^9.120}{-8^4.3^{12}-6^{11}}=\frac{\left(2^2\right)^6.\left(3^2\right)^5+2^9.3^9.2^3.3.5}{-\left(2^3\right)^4.3^{12}-2^{11}.3^{11}}\)
\(=\frac{2^{12}.3^{10}+2^{12}.3^{10}.5}{-2^{12}.3^{12}-2^{11}.3^{11}}=\frac{2^{12}.3^{10}\left(1+5\right)}{2^{11}.3^{11}\left(-2.3-1\right)}=\frac{2\left(1+5\right)}{3\left(-6-1\right)}=\frac{2.6}{3.\left(-7\right)}=\frac{-12}{21}\)
\(=-\dfrac{2^{12}\cdot3^{10}+3^9\cdot2^9\cdot2^3\cdot3\cdot5}{2^{12}\cdot3^{12}+2^{11}\cdot3^{11}}\)
\(=-\dfrac{2^{12}\cdot3^{10}+3^{10}\cdot2^{12}\cdot5}{2^{11}\cdot3^{11}\cdot7}\)
\(=-\dfrac{3^{10}\cdot2^{12}\cdot6}{2^{11}\cdot3^{11}\cdot7}=-\dfrac{2}{3}\cdot\dfrac{6}{7}=\dfrac{-12}{21}=-\dfrac{4}{7}\)
\(=\frac{2^{12}\cdot3^{10}+2^9\cdot3^9\cdot2^3\cdot5\cdot3}{2^{12}\cdot3^{12}-2^{11}\cdot3^{11}}\)
\(=\frac{2^{12}\cdot3^{10}\left(1+5\right)}{2^{11}\cdot3^{11}\left(2\cdot3-1\right)}\)\(=\frac{2^{13}\cdot3^{11}}{2^{11}\cdot3^{11}\cdot5}=\frac{4}{5}\)
\(B=\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}\)
\(B=\frac{2^{12}.3^{10}+2^9.3^9.2^3.3.5}{2^{12}.3^{12}-2^{11}.3^{11}}\)
\(B=\frac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{12}.3^{12}-2^{11}.3^{11}}\)
\(B=\frac{2^{11}.3^{10}.\left(2+2.5\right)}{2^{11}.3^{10}.\left(2.3^2-3\right)}\)
\(B=\frac{2+2.5}{2.3^2-3}\)
\(B=\frac{4}{5}\)
\(A=\frac{4^6.9^5+6^9.120}{-8^4.3^{12}-6^{11}}\)
\(=\frac{\left(2^2\right)^6.\left(3^2\right)^5+2^9.3^9.2^3.3.5}{-\left(2^3\right)^4.3^{12}-2^{11}.3^{11}}\)
\(=\frac{2^{12}.3^{10}+2^{12}.3^{10}.5}{-2^{12}.3^{12}-2^{11}.3^{11}}\)
\(=\frac{2^{12}.3^{10}.\left(1+5\right)}{-2^{11}.3^{11}.\left(2.3+1\right)}\)
\(=\frac{2.6}{-3.7}=\frac{-4}{7}\)