Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hai bài này tương tự nhau, bạn có thể tham khảo nhé.
\(P\ge\dfrac{\left(x+y\right)\left(x+y+z\right)\left(x+y+z+t\right)}{\dfrac{1}{4}\left(x+y\right)^2ztu}=\dfrac{4\left(x+y+z\right)\left(x+y+z+t\right)}{\left(x+y\right)ztu}\)
\(P\ge\dfrac{4\left(x+y+z\right)\left(x+t\text{y}+z+t\right)}{\dfrac{1}{4}\left(x+y+z\right)^2tu}=\dfrac{16\left(x+y+z+t\right)}{\left(x+y+z\right)tu}\)
\(P\ge\dfrac{16\left(x+y+z+t\right)}{\dfrac{1}{4}\left(x+y+z+t\right)^2u}=\dfrac{64}{\left(x+y+z+t\right)u}\ge\dfrac{64}{\dfrac{1}{4}\left(x+y+z+t+u\right)^2}=256\)
Dấu "=" xảy ra khi \(\left(x;y;z;t;u\right)=\left(\dfrac{1}{16};\dfrac{1}{16};\dfrac{1}{8};\dfrac{1}{4};\dfrac{1}{2}\right)\)
a: \(\Leftrightarrow\left\{{}\begin{matrix}9x-3y=15\\2x+3y=18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=3x-5=4\end{matrix}\right.\)
mk cảm ơn bạn đã giúp mk nhưng mà bạn làm chi tiết giùm mk nhé
Câu 2b
\(\left\{{}\begin{matrix}2x+y=5\\2x-6y=14m-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7y=5-14m+2\\x=\dfrac{5-y}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1-2m\\x=\dfrac{5-1+2m}{2}=2+m\end{matrix}\right.\)
Ta có \(2\left(m+2\right)^2-\left(2m-1\right)^2=17\)
\(\Leftrightarrow2m^2+8m+8-4m^2+4m-1=17\Leftrightarrow-2m^2+12m-10=0\)
Ta có a + b + c = -2 + 12 - 10 = 0
vậy pt có 2 nghiệm m = 1 ; m = 5
Bài 2:
a: Thay x=1 vào B, ta được:
\(B=\dfrac{2\cdot\left(1-1\right)}{1+1}=0\)
b: \(A=\dfrac{x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}=2\)
Bài 2.
a.Thế \(x=1\) vào B ta có:
\(B=\dfrac{2\left(\sqrt{1}-1\right)}{\sqrt{1}+1}=\dfrac{2.0}{2}=\dfrac{0}{2}=0\)
b.
\(A=\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\)
\(A=\dfrac{\left(x\sqrt{x}-1\right)\left(\sqrt{x}+1\right)-\left(x\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(A=\dfrac{x^2+x\sqrt{x}-\sqrt{x}-1-x^2+x\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(A=\dfrac{2x\sqrt{x}-2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(A=\dfrac{2\sqrt{x}\left(x-1\right)}{\sqrt{x}\left(x-1\right)}\)
\(A=2\)
c.\(P=1:\left(A:B\right)=1:\dfrac{2\left(\sqrt{x}+1\right)}{2\left(\sqrt{x}-1\right)}=1:\dfrac{\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=\dfrac{\sqrt{x}+1}{\sqrt{x}+1}-\dfrac{2}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\)
Đê P lớn nhất thì \(\sqrt{x}+1\) nhỏ nhất, mà \(\sqrt{x}+1\ge1\) => Min =1
\(\Rightarrow P\le1-\dfrac{2}{1}=1-2=-1\)
a, với m = 2 ta có :
\(\left\{{}\begin{matrix}x+2y=4\\2x-y=3\end{matrix}\right.\) ⇔\(\left\{{}\begin{matrix}x+2y=4\\4x-2y=6\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}x+2y=4\\5x=10\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}2+2y=4\\x=2\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}2y=2\\x=2\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}y=1\\x=2\end{matrix}\right.\)
Vậy với m = 2 thì hệ phương trình trên có nghiệm duy nhất là : (x ; y) = (2 ; 1)
Khi a=1 thì hệ sẽ là:
x-3y=4 và 3x+2y=1
=>x=1 và y=-1