K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Hai bài này tương tự nhau, bạn có thể tham khảo nhé.

undefinedundefined

NV
28 tháng 7 2021

\(P\ge\dfrac{\left(x+y\right)\left(x+y+z\right)\left(x+y+z+t\right)}{\dfrac{1}{4}\left(x+y\right)^2ztu}=\dfrac{4\left(x+y+z\right)\left(x+y+z+t\right)}{\left(x+y\right)ztu}\)

\(P\ge\dfrac{4\left(x+y+z\right)\left(x+t\text{y}+z+t\right)}{\dfrac{1}{4}\left(x+y+z\right)^2tu}=\dfrac{16\left(x+y+z+t\right)}{\left(x+y+z\right)tu}\)

\(P\ge\dfrac{16\left(x+y+z+t\right)}{\dfrac{1}{4}\left(x+y+z+t\right)^2u}=\dfrac{64}{\left(x+y+z+t\right)u}\ge\dfrac{64}{\dfrac{1}{4}\left(x+y+z+t+u\right)^2}=256\)

Dấu "=" xảy ra khi \(\left(x;y;z;t;u\right)=\left(\dfrac{1}{16};\dfrac{1}{16};\dfrac{1}{8};\dfrac{1}{4};\dfrac{1}{2}\right)\)

23 tháng 12 2021

a: \(\Leftrightarrow\left\{{}\begin{matrix}9x-3y=15\\2x+3y=18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=3x-5=4\end{matrix}\right.\)

23 tháng 12 2021

mk cảm ơn bạn đã giúp mk nhưng mà bạn làm chi tiết giùm mk nhé

25 tháng 2 2022

Câu 2b 

\(\left\{{}\begin{matrix}2x+y=5\\2x-6y=14m-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7y=5-14m+2\\x=\dfrac{5-y}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1-2m\\x=\dfrac{5-1+2m}{2}=2+m\end{matrix}\right.\)

Ta có \(2\left(m+2\right)^2-\left(2m-1\right)^2=17\)

\(\Leftrightarrow2m^2+8m+8-4m^2+4m-1=17\Leftrightarrow-2m^2+12m-10=0\)

Ta có a + b + c = -2 + 12 - 10 = 0 

vậy pt có 2 nghiệm m = 1 ; m = 5 

25 tháng 2 2022

đang ktra bn ơi

Bài 2: 

a: Thay x=1 vào B, ta được:

\(B=\dfrac{2\cdot\left(1-1\right)}{1+1}=0\)

b: \(A=\dfrac{x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}=2\)

14 tháng 4 2022

Bài 2.

a.Thế \(x=1\) vào B ta có:

\(B=\dfrac{2\left(\sqrt{1}-1\right)}{\sqrt{1}+1}=\dfrac{2.0}{2}=\dfrac{0}{2}=0\)

b.

\(A=\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\)

\(A=\dfrac{\left(x\sqrt{x}-1\right)\left(\sqrt{x}+1\right)-\left(x\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(A=\dfrac{x^2+x\sqrt{x}-\sqrt{x}-1-x^2+x\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(A=\dfrac{2x\sqrt{x}-2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(A=\dfrac{2\sqrt{x}\left(x-1\right)}{\sqrt{x}\left(x-1\right)}\)

\(A=2\)

c.\(P=1:\left(A:B\right)=1:\dfrac{2\left(\sqrt{x}+1\right)}{2\left(\sqrt{x}-1\right)}=1:\dfrac{\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=\dfrac{\sqrt{x}+1}{\sqrt{x}+1}-\dfrac{2}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\)

Đê P lớn nhất thì \(\sqrt{x}+1\) nhỏ nhất, mà \(\sqrt{x}+1\ge1\) => Min =1

\(\Rightarrow P\le1-\dfrac{2}{1}=1-2=-1\)

17 tháng 4 2022

a, với m = 2 ta có :

\(\left\{{}\begin{matrix}x+2y=4\\2x-y=3\end{matrix}\right.\) ⇔\(\left\{{}\begin{matrix}x+2y=4\\4x-2y=6\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}x+2y=4\\5x=10\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}2+2y=4\\x=2\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}2y=2\\x=2\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}y=1\\x=2\end{matrix}\right.\)

Vậy với m = 2 thì hệ phương trình trên có nghiệm duy nhất là : (x ; y) = (2 ; 1)

Khi a=1 thì hệ sẽ là:

x-3y=4 và 3x+2y=1

=>x=1 và y=-1