Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (a + b + c)2 = [(a + b) + c]2 = (a + b)2 + 2(a + b)c + c2
= a2+ 2ab + b2 + 2ac + 2bc + c2
= a2 + b2 + c2 + 2ab + 2bc + 2ac.
b) (a + b – c)2 = [(a + b) – c]2 = (a + b)2 - 2(a + b)c + c2
= a2 + 2ab + b2 - 2ac - 2bc + c2
= a2 + b2 + c2 + 2ab - 2bc - 2ac.
c) (a – b –c)2 = [(a – b) – c]2 = (a – b)2 – 2(a – b)c + c2
= a2 – 2ab + b2 – 2ac + 2bc + c2
= a2 + b2 + c2 – 2ab + 2bc – 2ac.
bài này phải không nếu đúng thì tích hộ mình
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
\(x^2+5x+6=0\)
\(\Leftrightarrow\left(x^2+2x\right)+\left(3x+6\right)=0\)
\(\Leftrightarrow x\left(x+2\right)+3\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-3\end{cases}}}\)
\(x^2+5x+6=0\)
\(\Rightarrow x^2+2x+3x+6=0\)
\(\Rightarrow x\left(x+2\right)+3\left(x+2\right)=0\)
\(\Rightarrow\left(x+2\right)\left(x+3\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x+2=0\\x+3=0\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}-2\\-3\end{array}\right.\)
Vậy x = -2 và x = -3
Ta có: \(x^2+5x+6=0\)
<=> \(\left(x^2+2x\right)+\left(3x+6\right)=0\)
<=> \(\left(x+2\right)\left(x+3\right)=0\)
<=> \(\left[\begin{array}{nghiempt}x+2=0\\x+3=0\end{array}\right.\)
<=> \(\left[\begin{array}{nghiempt}x=-2\\x=-3\end{array}\right.\)
Vậy x\(\in\left\{-3;-2\right\}\)
a) có P đồng thời là trung điểm của AB và NM nên ANBM là hình bình hành
b)dễ cm CBNM là hình bình hành
nên MN=BC
c)để ANBM vuông thì ANBM có 1 góc vuông
ta chọn góc đó là góc <AMB
khi đó BM đồng thời là đường thời là đường cao và trung tuyến nên ABC cân tại B
vậy ABC là tam giác vuông cân tại B
c) giống câu a ta dễ cm BMCK là hình bình hành
suy ra BK // BC
mà BN // BC
nên B,K,N thẳng hàng
có BN=AM (ANBM là hình bình hành)
BK=CM (BMCK là hình bình hành)
AM=CM ( M là trung điểm AC)
suy ra BN=BK và B,K,N thẳng hàng
nên N và K đối xứng qua B
a: Ta có: \(\widehat{DAH}+\widehat{DAB}=180^0\)
\(\widehat{CBK}+\widehat{CBA}=180^0\)
mà \(\widehat{DAB}=\widehat{CBA}\)
nên \(\widehat{DAH}=\widehat{CBK}\)
Xét ΔDAH vuông tại H và ΔCBK vuông tại K có
DA=CB
\(\widehat{DAH}=\widehat{CBK}\)
Do đó: ΔDAH=ΔCBK
Suy ra: AH=BK
b: Xét tứ giác HKCD có
HK//CD
HD//KC
Do đó: HKCD là hình bình hành
Suy ra: HK=CD
mà CD=10cm
nên HK=10cm
\(\Leftrightarrow AH=BK=\dfrac{HK-AB}{2}=\dfrac{10-6}{2}=2cm\)
a: Ta có: M và E đối xứng nhau qua AB
nên AB là đường trung trực của ME
Suy ra: AM=AE(1)
Ta có: M và F đối xứng nhau qua AC
nên AC là đường trung trực của MF
Suy ra: AM=AF(2)
Từ (1) và (2) suy ra AE=AF
b: Xét ΔAME có AM=AE
nên ΔAME cân tại A
mà AB là đường trung trực ứng với cạnh đáy ME
nên AB là tia phân giác của \(\widehat{MAE}\)
Xét ΔAMF có AM=AF
nên ΔAMF cân tại A
mà AC là đường trung trực ứng với cạnh đáy MF
nên AC là tia phân giác của \(\widehat{MAF}\)
Ta có: \(\widehat{EAF}=\widehat{FAM}+\widehat{EAM}\)
\(=2\cdot\left(\widehat{BAM}+\widehat{CAM}\right)\)
\(=2\cdot90^0=180^0\)
Do đó: E,A,F thẳng hàng
mà AE=AF
nên A là trung điểm của EF
Ta có: ΔABC cân tại A
mà AH là đường phân giác ứng với cạnh BC
nên AH là đường trung trực ứng với cạnh BC
Ta có: AE+EB=AB
AF+FC=AC
mà AE=AF
và AB=AC
nên EB=FC
Xét ΔEBH và ΔFCH có
EB=FC
\(\widehat{B}=\widehat{C}\)
HB=HC
Do đó: ΔEBH=ΔFCH
Suy ra: HE=HF
Ta có: AE=AF
nên A nằm trên đường trung trực của EF(1)
ta có: HE=HF
nên H nằm trên đường trung trực của EF(2)
Từ (1) và (2) suy ra AH là đường trung trực của FE
hay E và F đối xứng nhau qua AH
Ta có: DB=DC
nên D nằm trên đường trung trực của BC(1)
Ta có: AB=AC
nên A nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra AD là đường trung trực của BC
hay B và C đối xứng nhau qua AD