K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(Q=\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\)

\(=\sqrt{2}+1-\sqrt{2}+1\)

\(=2\)

13 tháng 10 2021

1) \(=2\sqrt{5}-3+5-2\sqrt{5}=2\)

2) \(=\dfrac{2\sqrt{3}-2-2\sqrt{3}-2}{3-1}=\dfrac{-4}{2}=-2\)

3) \(=\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}=\sqrt{5}+\sqrt{2}-\sqrt{5}+\sqrt{2}=2\sqrt{2}\)

13 tháng 10 2021

bạn ơi sao câu 3 lại ra là \(\sqrt{\left(\sqrt{5+\sqrt{2}}\right)^2}\) vậy ạ, bạn giải thích giúp mình được không 

8 tháng 7 2017

\(A=\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{5}}-\sqrt{2}\)

\(=\sqrt{\frac{6+2\sqrt{5}}{2}}+\sqrt{\frac{14-6\sqrt{5}}{2}}-\sqrt{2}\)

\(=\sqrt{\frac{\left(\sqrt{5}+1\right)^2}{2}}+\sqrt{\frac{\left(3-\sqrt{5}\right)^2}{2}}-\sqrt{2}\)

\(=\frac{\sqrt{5}+1}{\sqrt{2}}+\frac{3-\sqrt{5}}{\sqrt{2}}-\sqrt{2}\)

\(=2\sqrt{2}-\sqrt{2}\)

25 tháng 9 2021

1) \(=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)

2) \(=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}=\sqrt{3}+\sqrt{2}\)

3) \(=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}=\sqrt{5}-\sqrt{2}\)

5) \(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}=\sqrt{5}+\sqrt{3}\)

6) \(=\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}=\sqrt{7}-\sqrt{3}\)

7) \(=\sqrt{\left(3+\sqrt{2}\right)^2}=3+\sqrt{2}\)

a: Ta có: \(\dfrac{4}{\sqrt{7}-\sqrt{3}}+\dfrac{6}{3+\sqrt{3}}+\dfrac{\sqrt{7}-7}{\sqrt{7}-1}\)

\(=\sqrt{7}+\sqrt{3}+3-\sqrt{3}-\sqrt{7}\)

=3

29 tháng 9 2020

1) \(\left(\sqrt{6}-\sqrt{8}\right)\left(\sqrt{6}+\sqrt{8}\right)\)

\(=\left(\sqrt{6}\right)^2-\left(\sqrt{8}\right)^2\)

\(=6-8=-2\)

2) \(\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)\)

\(=3^2-\left(\sqrt{5}\right)^2\)

\(=9-5=4\)

29 tháng 9 2020

3) \(\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}\)

\(=\sqrt{4-4\sqrt{3}+3}+\sqrt{4+4\sqrt{3}+3}\)

\(=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(2+\sqrt{3}\right)^2}\)

\(=2-\sqrt{3}+2+\sqrt{3}=4\)

4) Xét ta thấy: \(2\sqrt{3}=\sqrt{12}< \sqrt{16}=4\)

=> \(2\sqrt{3}-4< 0\) => vô lý không tm đk căn

2 tháng 7 2018

         \(\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\)

\(=\sqrt[3]{\left(\sqrt{2}+1\right)^3}-\sqrt[3]{\left(\sqrt{2}-1\right)^3}\)

\(=\left(\sqrt{2}+1\right)-\left(\sqrt{2}-1\right)\)

\(=2\)

17 tháng 8 2020

+) \(3\sqrt{20}-2\sqrt{45}+4\sqrt{5}\)

\(=3\sqrt{4.5}-2\sqrt{9.5}+4\sqrt{5}\)

\(=6\sqrt{5}-6\sqrt{5}+4\sqrt{5}\)

\(=4\sqrt{5}\)

+) \(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}\)

\(=\left(2\sqrt{7}-\sqrt{28}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}\)

\(=\left(2\sqrt{7}-2\sqrt{7}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}\)

\(=7+7\sqrt{8}\)