Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cau a dau nhi cuoi cung k phai j dau nha ! mk an lom !
\(a,\)\(\left|x+5\right|=\frac{1}{7}-\left|\frac{4}{3}-\frac{1}{6}\right|\)
\(\Leftrightarrow\left|x+5\right|=\frac{1}{7}-\frac{7}{6}\)
\(\Leftrightarrow\left|x+5\right|=\frac{-43}{42}\)
ta có |x+5| \(\ge\)0 \(\forall x\)
Mà \(-\frac{43}{42}< 0\)nên ko có giá trị x thoả mãn
b,
\(\left|x+\frac{2}{3}\right|=\frac{1}{2}-\left(\frac{1}{4}+\frac{2}{3}\right)\)
\(\Leftrightarrow\left|x+\frac{2}{3}\right|=\frac{11}{12}\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{2}{3}=\frac{11}{12}\forall x\ge-\frac{2}{3}\\-x-\frac{2}{3}=\frac{11}{12}\forall< -\frac{2}{3}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{4}\\x=-\frac{19}{12}\end{cases}}\)(thoả mãn đk)
Vì \(\left|x+\frac{1}{2}\right|\ge0;\left|x+\frac{1}{3}\right|\ge0;\left|x+\frac{1}{6}\right|\ge0\) với mọi x
=>\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|x+\frac{1}{6}\right|\ge0\) với mọi x
=>\(4x\ge0=>x\ge0\), do đó PT ban đầu trở thành:
\(x+\frac{1}{2}+x+\frac{1}{3}+x+\frac{1}{6}=4x< =>3x+1=4x< =>x=1\)
Vậy x=1
\(\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|=0\)
vì \(\left|\frac{3}{2}x+\frac{1}{9}\right|\ge0;\left|\frac{1}{5}y-\frac{1}{2}\right|\ge0=>\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|\ge0\) (với mọi x,y)
Mà \(\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|=0\) (theo đề)
Nên \(\left|\frac{3}{2}x+\frac{1}{9}\right|=0=>\frac{3}{2}x=-\frac{1}{9}=>x=-\frac{2}{27}\)
\(\left|\frac{1}{5}y-\frac{1}{2}\right|=0=>\frac{1}{5}y=\frac{1}{2}=>y=\frac{5}{2}\)
Vậy...........
Ta có:
3x-1/2 = 0
3x= 1/2
x= 1/6
và 1/2y + 3/5 =0
1/2y = -3/5
y= -6/5
Vậy x= 1/6 và y = -6/5
\(\left(3x-\frac{1}{2}\right)+\left(\frac{1}{2}y+\frac{3}{5}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-\frac{1}{2}=0=\frac{1}{6}\\\frac{1}{2}y+\frac{3}{5}=0=\frac{6}{5}\end{cases}}\)
Vậy ......
a: \(P=2x^2+3xy+y^2=\left(2x+y\right)\left(x+y\right)\)
\(=\left(2\cdot\dfrac{-1}{2}+\dfrac{2}{3}\right)\left(\dfrac{-1}{2}+\dfrac{2}{3}\right)\)
\(=\dfrac{-1}{3}\cdot\dfrac{1}{6}=-\dfrac{1}{18}\)
d: \(Q=\dfrac{-1}{3}x^4y^2=\dfrac{-1}{3}\cdot16\cdot\dfrac{1}{16}=-\dfrac{1}{3}\)
\(7^{2+x}+ 2.7^{x-1}=345\)
\(\Rightarrow7^2.7^x+2.7^x:7=345\)
\(\Rightarrow49.7^x+\frac{2}{7}.7^x=345\)
\(\Rightarrow\left(49+\frac{2}{7}\right)7^x=345\)
\(\Rightarrow\frac{345}{7}.7^x=345\)
\(\Rightarrow7^x=7\)
\(\Rightarrow x=1\)
Vậy \(x=1\)
Câu kia lấy 2 cái trừ đi là ra ...
\(A=\left|x-1\right|+2018\)
ta có :
\(\left|x-1\right|\ge0\)
\(\Rightarrow\left|x-1\right|+2018\ge0+2018\)
\(\Rightarrow\left|x-1\right|+2018\ge2018\)
dấu "=" xảy ra khi :
\(\left|x-1\right|=0\)
\(\Rightarrow x-1=0\)
\(\Rightarrow x=1\)
vậy MinA = 2018 khi x = 1
Bạn nào thông minh giải cả 3 câu hộ mình luôn nha. mk đang cần gấp các bạn ơi
Ta có : (x - 1)2 = (x - 1)4
=> (x - 1)4 - (x - 1)2 = 0
=> (x - 1)2.[(x - 1)2 - 1] = 0
=> \(\orbr{\begin{cases}\left(x-1\right)^2=0\\\left(x-1\right)^2-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x-1=0\\\left(x-1\right)^2=1^2\end{cases}\Rightarrow}\orbr{\begin{cases}x-1=0\\x-1=\pm1\end{cases}}}\)
Nếu x - 1 = 0 => x = 1
Nếu x - 1 = 1 => x = 2
Nếu x - 1 = - 1 => x = 0
Vậy \(x\in\left\{0;1;2\right\}\)
b) 5 - 1 . 25x = 125
=> \(\frac{1}{5}.25^x=125\)
=> 25x = 625
=> 25x = 252
=> x = 2
Vậy x = 2
a) \(\left(x-1\right)^2=\left(x-1\right)^4\Leftrightarrow1=\left(x-1\right)^2\)\(\Leftrightarrow x-1=1\Leftrightarrow x=2\)
b) \(5^{-1}.25^x=125\Leftrightarrow5.25^{x-1}=125\Leftrightarrow25^{x-1}=25\)\(\Rightarrow x-1=1\Leftrightarrow x=2\)