Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn tự vẽ hình:
a)ta có:
BC//AD nên
góc BCA= góc CAD ( so le trong )
mà góc CAD= góc BAC ( AC là p/g của góc BAD)
=>góc BCA= góc BAC
=> tam giác ABC cân tại A
b)
tam giác ABC cân tại A => góc BAC= góc BCA =60o/2=30o
ta có: góc ABC+góc BCA + góc BAC=180o ( định lí tổng 3 góc của 1 tam giác )
=> góc ABC=180o-30o-30o
=120o
mà góc ABC=góc BCD = 120o (ABCD là hình thang cân )
=> góc ACD= góc BCD- góc BCA
=120o-30o
=90o
suy ra: AC vuông góc với CD
c) Xét tam giác ABC và tam giác DCB
BC : cạnh chung
góc ABC= góc BCD ( ABCD là hình thang cân )
AB=CD ( ABCD là hình thang cân )
suy ra tam giác ABC= tam giác DCB ( c-g-c)
=> góc BAC= góc CDB ( 2 góc tương ứng )
mà góc BAC+ góc CAD= góc BAD
góc CDB+ góc BDA = góc CDA
kết hợp với góc BAD=góc CDA (ABCD là hình thang cân )
=> góc CAD = góc BCA
=> tam giác AMD cân tại M
=>MA=MD
Bài 2:
a: Xét ΔABE và ΔACF có
góc ABE=góc ACF
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC
=>BFEC là hình thang
mà CF=BE
nên BFEC là hình thang cân
c: Xét ΔFEB có góc FEB=góc FBE
nên ΔFEB cân tại F
=>FE=FB=EC
a: Xét tứ giác ABEC có
AB//CE
AC//BE
Do đó: ABEC là hình bình hành
Suy ra: AC=BE
mà AC=BD
nên BE=BD
Xét ΔBDE có BE=BD
nên ΔBDE cân tại B
b: Xét ΔACD và ΔBDC có
AC=BD
AD=BC
CD chung
Do đó: ΔACD=ΔBDC
c: Hình thang ABCD có AC=BD
nên ABCD là hình thang cân
a/vì AB//DC(gt) suy ra AB//DE
và AC//BE(gt)
do hai đoạn thẳng song song(AB//DE) chắn bởi 2 đường thẳng song song (AC//BE) suy ra AC=BE
Mà AC=BD(gt)
suy ra BD=BE
Trong tam giác BDE có BD=BE suy ra tam giác BDE cân tại B (dpcm)
b/Chứng minh:tg ACD=tg BDC
VÌ tg BDE cân tại B nên ta có :GÓc B1 = GÓc E1(*)
Vì AC//BE(gt)
E=C1 là 2 góc đồng vị
suy ra góc C1 =góc E(**)
từ (*);(**) suy ra B1=C1
bạn tự xét tg nha
suy ra tg ACD=tg BDC
c/bạn tự cm lun nha
a: Hình thang ABCD có
M là trung điểm của AD
N là trung điểm của BC
Do đó: MN là đường trung bình của hình thang ABCD
Suy ra: MN//BA//CD
Xét ΔAMI có \(\widehat{MAI}=\widehat{MIA}\left(=\widehat{IAB}\right)\)
nên ΔAMI cân tại M
Xét ΔBKN có \(\widehat{NKB}=\widehat{NBK}\left(=\widehat{ABK}\right)\)
nên ΔBKN cân tại N
b: Xét ΔAID có
IM là đường trung tuyến ứng với cạnh AD
\(IM=\dfrac{AD}{2}\left(=AM\right)\)
nên ΔIAD vuông tại I
Xét ΔBKC có
KN là đường trung tuyến ứng với cạnh BC
\(KN=\dfrac{BC}{2}\left(=BN\right)\)
nên ΔBKC vuông tại K