Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 2x+1=3x-5
1=x-5(giảm cả hai vế đi 2x)
1+5=x
x=6
b,2.(x.2)=5x-1/2
2.2.x=5x-1/2
4x=5x-1/2
4x+1/2=5x(giảm cả hai vế đi 4x)
1/2=x
c,lx-1l=1/2
lxl=1/2+1
lxl=1,5
x=1,5;-1,5
d,I2-3xI+1/2=2/3
l2-3xl=2/3-1/2
l2-3xl=1/3
l3xl=2-1/3
l3xl=5/3
lxl=5/3:3
lxl=5/9
x=5/9;-5/9
e,1/2x-2/3=1/4
1/2x=1/4+2/3
1/2x=11/12
x=11/12:1/2
x=11/6
j,3.(2x-1)=x-2
6x-3=x-2
6x-1=x
1=6x-x
1=5x
x=1/5
g,I1/2x-1I=1/3
l1/2xl=1/3+1
l1/2xl=4/3
lxl=4/3:1/2
lxl=8/3
x=8/3;-8/3
h,I3x-2I-1/2=1
l3x-2l=1+1/2
l3x-2l=3/2
l3xl=3/2+2
l3xl=7/2
lxl=7/2:3
lxl=7/6
x=7/6;-7/6
Áp dụng Bdt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(A=\left|x-2001\right|+\left|x-1\right|\)
\(\ge\left|x-2001+1-x\right|=2000\)
Dấu = khi \(1\le x\le2001\)
Vậy MinA=2000 khi \(1\le x\le2001\)
(3x-1)+(1-3x)=6
Suy ra: 3x-1+1-3x=6
3x-3x=6
9x=6
x=6:9
x=2/3
a: \(\Leftrightarrow\left\{{}\begin{matrix}3x-2>-4\\3x-2< 4\end{matrix}\right.\Leftrightarrow-\dfrac{2}{3}< x< 2\)
c: \(\Leftrightarrow\left[{}\begin{matrix}3x-1>5\\3x-1< -5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>2\\x< -\dfrac{4}{3}\end{matrix}\right.\)
d: \(\Leftrightarrow\left[{}\begin{matrix}3x+1>x-2\\3x+1< -x+2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x>-3\\4x< 1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>-\dfrac{3}{2}\\x< \dfrac{1}{4}\end{matrix}\right.\)
Ta có:
\(B-2011=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\)
\(\ge x-1+0+3-x=2\)
\(\Rightarrow B-2011\ge2\)\(\Rightarrow B\ge2013\)
Dấu = khi \(\begin{cases}x-1\ge0\\x-2=0\\3-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x=2\\x\le3\end{cases}\)\(\Leftrightarrow x=2\)
Vậy MinB=2013 khi x=2