K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2022

\(\text{8.C.So le trong}\)

\(\text{9.C.a trùng b}\)

\(\text{10.B.}60^0\)

\(\text{11.C.}150^0\)

\(\text{12.B.A=P}\)

 

5 tháng 1 2022

thank bạn nha

27 tháng 11 2021

Bài nào ạ. Ảnh bị lỗi.

6 tháng 9 2021

Ta có : a song song với b 

=> Góc A = Góc B = 90độ

Hay x = 90 độ

=> Góc D + Góc C = 180độ ( 2 góc trong cùng phía )

=> y + 130 độ = 180 độ

=> y = 50 độ

6 tháng 9 2021

Vẽ Cx song song với Am(1), ta được :

=> Góc mAC + Góc ACx = 180 độ

=> Góc mAC + Góc BCA + Góc BCx = 180 độ 

Hay Góc BCx = 180 độ - 45 độ - 60 độ = 75 độ 

Vì Góc nBC + Góc BCx =  180 độ ( 75 độ + 105 độ = 180 độ )

Mà Góc nBC và Góc BCx là 2 góc trong cùng phía 

Nên ta được Bn song song với Cx  (2)

Từ (1) và (2) => Bn song song với Am

a: Xét ΔABM và ΔACM có

AB=AC

AM chung

BM=CM

Do đó:ΔABM=ΔACM

b: ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

c: BC=6cm

nên BM=3cm

=>AM=4cm

d: Xét ΔABC cân tại A có AM là đường cao

nên AM là phân giác của góc BAC

Xét ΔABC có

AM là đường phân giác

BI là đường phân giác

AM cắt BI tại I

Do đó: CI là tia phân giác của góc ACB

1 tháng 3 2022

em cảm ơn nhiều lắmhihi

13 tháng 11 2021

Bài 3: 

Diện tích là:

\(15\cdot6=90\left(m^2\right)\)

13 tháng 11 2021

Bài 3:

Gọi cd,cr lần lượt là a,b(m;a,b>0)

Áp dụng tc dtsbn:

\(\dfrac{b}{a}=\dfrac{2}{5}\Rightarrow\dfrac{a}{5}=\dfrac{b}{2}=\dfrac{2a+2b}{10+4}=\dfrac{42}{14}=3\\ \Rightarrow\left\{{}\begin{matrix}a=15\\b=6\end{matrix}\right.\\ \Rightarrow S_{hcn}=ab=90\left(m^2\right)\)

Bài 4:

Gọi cd,cr lân lượt là a,b(m;a,b>0)

Đặt \(\dfrac{a}{4}=\dfrac{b}{3}=k\Rightarrow a=4k;b=3k\)

\(ab=300\left(m^2\right)\\ \Rightarrow12k^2=300\\ \Rightarrow k^2=25\Rightarrow k=5\left(k>0\right)\\ \Rightarrow\left\{{}\begin{matrix}a=20\\b=15\end{matrix}\right.\)

Vậy ...

Bài 5:

Gọi số hs 7A,7B,7C,7D ll là a,b,c,d(hs;a,b,c,d∈N*)

Áp dụng tc dtsbn:

\(\dfrac{a}{11}=\dfrac{b}{12}=\dfrac{c}{13}=\dfrac{d}{14}=\dfrac{2b-a}{24-11}=\dfrac{39}{13}=3\\ \Rightarrow\left\{{}\begin{matrix}a=33\\b=36\\c=39\\d=42\end{matrix}\right.\)

Vậy ...

 

\(2^x:1+2^x:2+...+2^x:49=2^{49}-1\)

\(2^x.1+2^x.\frac{1}{2}+...+2^x.\frac{1}{49}=2^{49}-1\)

\(2^x.\left(1+\frac{1}{2}+...+\frac{1}{49}\right)=2^{49}-1\)

3 tháng 3 2020

Đặt: \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}\)

=> \(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{48}}\)

=> \(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{48}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^{49}}\right)\)

=> \(A=1-\frac{1}{2^{49}}=\frac{2^{49}-1}{2^{49}}\)

\(2^{x-1}+2^{x-2}+2^{x-3}+...+2^{x-49}=2^{49}-1\)

<=> \(\frac{2^x}{2}+\frac{2^x}{2^2}+\frac{2^x}{2^3}+...+\frac{2^x}{2^{49}}=2^{49}-1\)

<=> \(2^x\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}\right)=2^{49}-1\)

<=> \(2^x.\frac{2^{49}-1}{2^{49}}=2^{49}-1\)

<=> \(2^x=2^{49}\)

<=> x = 49.

6 tháng 9 2021

c. \(\left|\dfrac{8}{4}-\left|x-\dfrac{1}{4}\right|\right|-\dfrac{1}{2}=\dfrac{3}{4}\)

\(\Rightarrow\left[{}\begin{matrix}\left|\dfrac{8}{4}-x+\dfrac{1}{4}\right|-\dfrac{1}{2}=\dfrac{3}{4}\\\left|\dfrac{8}{4}+x-\dfrac{1}{4}\right|-\dfrac{1}{2}=\dfrac{3}{4}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left|\dfrac{9}{4}-x\right|-\dfrac{1}{2}=\dfrac{3}{4}\\\left|\dfrac{7}{4}+x\right|-\dfrac{1}{2}=\dfrac{3}{4}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}\dfrac{9}{4}-x-\dfrac{1}{2}=\dfrac{3}{4}\\x=\dfrac{9}{4}-\dfrac{1}{2}=\dfrac{3}{4}\end{matrix}\right.\\\left[{}\begin{matrix}\dfrac{7}{4}+x-\dfrac{1}{2}=\dfrac{3}{4}\\-\dfrac{7}{4}-x-\dfrac{1}{2}=\dfrac{3}{4}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=1\\x=\dfrac{7}{2}\end{matrix}\right.\\\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=-3\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{7}{2}\\x=-3\end{matrix}\right.\) 

Ở nơi x=9/4-1/2 là x-9/4-1/2 nha

 

 

6 tháng 9 2021

a. -1,5 + 2x = 2,5

<=> 2x = 2,5 + 1,5

<=> 2x = 4

<=> x = 2

b. \(\dfrac{3}{2}\left(x+5\right)-\dfrac{1}{2}=\dfrac{4}{3}\)

<=> \(\dfrac{3}{2}x+\dfrac{15}{2}-\dfrac{1}{2}=\dfrac{4}{3}\)

<=> \(\dfrac{9x}{6}+\dfrac{45}{6}-\dfrac{3}{6}=\dfrac{8}{6}\)

<=> 9x + 45 - 3 = 8

<=> 9x = 8 + 3 - 45

<=> 9x = -34

<=> x = \(\dfrac{-34}{9}\)

23 tháng 1 2019

(x-1)(x-3) >0 
<=> x^2-4x+3>0 
<=>x^2-2x2+4-1>0 
<=>(x-2)^2>1 
<=>x-2>1 
<=>x>3 

23 tháng 1 2019

(x-1)(x-3)>0 khi: 
TH1: x-1>0 và x-3>0 <=>x>1 và x>3 =>x>3 (vì x>3 thì chắc chắn sẽ lớn hơn 1) 
TH2: x-1<0 và x-3<0 <=>x<1 và x<3 =>x<1 (vì x<1 thì chắc chắn sẽ bé hơn 3) 
Vậy x>3 hoặc x<1 thì (x-1)(x-3)>0 

7 tháng 2 2016

xin loi mk moi hoc lop 6

7 tháng 2 2016

k biết thì zô tả lời lm j, phí giấy lắm e jaj ak

1 tháng 3 2018

A B C M I H N

  • Hạ \(BI\perp AC\)và \(MH\perp AC\)

Xét \(\Delta BIC\)và \(\Delta MHN\)có:

\(HN< IC\)

\(HM< BI\)

\(MN^2=HN^2+HM^2\)

\(BC^2=BI^2+IC^2\)

\(\Rightarrow MN< BC\)

Mà \(BC< AC\Rightarrow MN< BC\)

Cách 2: Xét \(\Delta MHN\)và \(\Delta MHC\)có:

MH chung

HN<HC

\(\hept{\begin{cases}MN^2=MH^2+HN^2\\MC^2=MH^2+HC^2\end{cases}\left\{MN< MC\right\}}\)

Mà MC<BC<AC => MN<AC

1 tháng 3 2018

A B C I M N

  • Kẻ \(NI\perp BC\)

Xét tam giác NIC và tam giác NIM có:

IN chung

IM<IC

\(MN^2=IN^2+IM^2\)

\(NC^2=IC^2+IN^2\)

=> MN<NC (vì IM<IC)

=> MN<NC<AC