Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{7x-2}{3}-2x< 5-\dfrac{x-2}{4}\)
<=>\(\dfrac{4\left(7x-2\right)}{12}-\dfrac{24x}{12}< \dfrac{60}{12}-\dfrac{3\left(x-2\right)}{12}\)
<=>\(4\left(7x-2\right)-24x< 60-3\left(x-2\right)\)
<=>\(28x-8-24x< 60-3x+6\)
<=>\(28x+3x-24x< 60+8+6\)
<=>\(7x< 74\)
<=>x<\(\dfrac{74}{7}\)
Vậy...
`(8x^3y^4z) : (4x^2y^4)`
`= (8:4) . (x^3 : x^2) . (y^4 : y^4) . z`
`= 2xz.`
Bài 1.
a. $=a^2+2.a.12+12^2=a^2+24a+144$
b. $=(3a)^2+2.3a.\frac{1}{3}+(\frac{1}{3})^2=9a^2+2a+\frac{1}{9}$
c. $=(5a^2)^2+2.5a^2.6+6^2=25a^4+60a^2+36$
d. $=\frac{1}{4}+2.\frac{1}{2}.4b+(4b)^2$
$=\frac{1}{4}+4b+16b^2$
e.
$=(a^m)^2+2.a^m.b^n+(b^n)^2$
$=a^{2m}+2a^mb^n+b^{2n}$
Bài 2.
$(x-0,3)^2=x^2-0,6x+0,09$
$(6x-3y)^2=36x^2-36xy+9y^2$
$(5-2xy)^2=25-20xy+4x^2y^2$
$(x^4-1)^2=x^8-2x^4+1$
$(x^5-y^3)^2=x^{10}-2x^5y^3+y^6$
a) ĐKXĐ \(\left\{{}\begin{matrix}a^2-4\ne0\\a+2\ne0\\2-a\ne0\\a-2+\dfrac{10-a^2}{a+2}\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a\ne2\\a\ne-2\\\dfrac{a^2-4+10-a^2}{a+2}\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a\ne2\\a\ne-2\end{matrix}\right.\)
Ta có:
\( A=\left(\dfrac{a}{a^2-4}+\dfrac{1}{a+2}+\dfrac{2}{2-a}\right):\left[\left(a-2\right)+\dfrac{10-a^2}{a+2}\right]\\ =\dfrac{a+\left(a-2\right)-2\left(a+2\right)}{\left(a-2\right)\left(a+2\right)}:\dfrac{a^2-4+10-a^2}{a+2}\\ =\dfrac{-6}{\left(a-2\right)\left(a+2\right)}\cdot\dfrac{a+2}{6}=\dfrac{-1}{a-2}\)
b) Để
\(A=-\dfrac{1}{a-2}=2007^0=1\\ \Rightarrow a-2=-1\Leftrightarrow a=1\left(t.m\right)\)
c) Để A<0
\(\Leftrightarrow\dfrac{-1}{a-2}< 0\Leftrightarrow a-2>0\Leftrightarrow a>2\left(t.m\right)\)