K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Do AM và BD là hai trung tuyến của tam giác ABC cắt nhau tại I nên I là trọng tâm của tam giác ABC, ta có: 
Ta có K là trọng tâm tam giác ACE nên  (2)
Mà BD = DE từ (1) và (2) suy ra BI = EK (3) . Mặt khác, ta lại có: và  suy ra ID = KD ( do BD = ED ) nên  (4). Từ (3) và (4) suy ra BI = IK = KE.

tích nha

9 tháng 4 2016

GIÚP MÌNH ĐI!!!!

15 tháng 5 2016

1.gọi giao của BD và CE là O

ta có: OB=2/3 BD=> OB=2/3  x 9=6

ta có: OC=2/3 EC=> OC=2/3  x12=8

ta có:\(OC^2+OB^2=6^2+8^2=36+64=100\)

\(BC^2=10^2=100\)

=> tam giác OBC vuông tại O=> BD_|_CE tại O

1.gọi giao của BD và CE là O

ta có: OB=2/3 BD=> OB=2/3  x 9=6

ta có: OC=2/3 EC=> OC=2/3  x12=8

ta có:$OC^2+OB^2=6^2+8^2=36+64=100$OC2+OB2=62+82=36+64=100

$BC^2=10^2=100$BC2=102=100

=> tam giác OBC vuông tại O=> BD_|_CE tại O

24 tháng 11 2016

A B C D E I K M T

gọi giao của BK và CI là T

ta có : Ab=AC=>tam giác ABC cân tại A

=> góc ABC= góc ACB

ABD=180o-ABC

ACE=180o-ACB

=> góc ABD= góc ACE

xét tam giác ABD và tam giác ACE có:

BD=CE(gt)

góc ABD=góc ACE

AB=AC(gt)

=> tam giác ABD=tam giác ACE(c.g.c)

=> AK=AE=> tam giác AKE cân tại A

MB=MC

BD=CE

MD=MB+BD

ME=MC+CE

=> MD=ME

tam giác AKE cân tại A có AM là đường trung tuyến=> AM đồng thời là phân giác góc KAE(1)

xét 2 tam giác vuông KBD và ICE có:

góc D= góc E(tam giác AKE cân tại A)

DB=EC(gt)

=>tam giác KBD=tam giác ICE(CH-GN)

=>KD=IE

AD=AE

AK=AD-DK

AI=AE-IE

=> AK=AI

xét 2 tam giác vuông AKB và tam giác AIC có:

AK=AI(cmt)

AB=AC(gt)

=>tam giác AKB=tam giác AIC(CH-CGV)

=> AT là tia phân giác góc KAE(2)

từ (1)(2)=> AI trùng AM=> A,M,T thẳng hàng

=> AM,BK,CT đồng quy tại T

24 tháng 11 2016

bang 8

8 tháng 8 2017

ai trả lời đúng vầ nhanh nhất sẽ nhận k

23 tháng 4 2019

ta có BD=ED(gt)

\(\Rightarrow\frac{2}{3}BD=\frac{2}{3}ED\Rightarrow BI=ED\left(1\right)\)

\(BD=ED\Rightarrow\frac{1}{3}BD=\frac{1}{3}ED\Rightarrow ID=DK\)

lại có:\(DE=\frac{1}{3}DE+\frac{1}{3}DE+\frac{1}{3}DE\)

\(\Rightarrow\frac{2}{3}DE=DK+ID\left(DK=ID\right)\)

\(\Rightarrow KE=IK\left(2\right)\)

từ \(\left(1\right)\left(2\right)\Rightarrow BI=IK=KE\)

a: Xét ΔADE và ΔCDB có 

DE=DB

\(\widehat{ADE}=\widehat{CDB}\)

DA=DC

Do đó: ΔADE=ΔCDB

Xét tứ giác ABCE có 

D là trung điểm của AC

D là trung điểm của BE

Do đó:ABCE là hình bình hành

Suy ra: AE//BC

b: ta có: ΔENB vuông tại N

mà ND là đường trung tuyến

nên ND=DB=DE=BE/2