Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ta có: ^MOB + ^BON = ^MON =900; ^NOC + ^BON = ^BOC = 900
=> ^MOB = ^NOC.
Xét \(\Delta\)OMB và \(\Delta\)ONC: ^MOB = ^NOC (cmt); OB=OC; ^OBM = ^OCN (=450)
=> \(\Delta\)OMB=\(\Delta\)ONC (g.c.g) => OM=ON (2 cạnh tương ứng)
Xét \(\Delta\)MON có: ^MON=900; OM=ON => \(\Delta\)MON vuông cân tại O (đpcm).
2) Ta có: \(\Delta\)OMB=\(\Delta\)ONC (cmt) => BM=CN => AB-BM=BC-CN => AM=BN
Suy ra \(\frac{AM}{BM}=\frac{BN}{CN}\). Mà \(\frac{BN}{CN}=\frac{AN}{EN}\)(Hệ quả ĐL Thales)
Nên \(\frac{AM}{BM}=\frac{AN}{EN}\)=> MN // BE (ĐL Thales đảo) (đpcm).
3) Do MN // BE (cmt) nên ^MNO = ^BKO = 450 (2 góc đồng vị).
Mà ^BCO = 450 => ^BKO = ^BCO =450 hay ^BKN = ^OCN => \(\Delta\)BNK ~ \(\Delta\)ONC (g.g)
\(\Rightarrow\frac{BN}{ON}=\frac{KN}{CN}\)hay \(\frac{BN}{KN}=\frac{ON}{CN}\)=> \(\Delta\)BON ~ \(\Delta\)KCN (c.g.c)
=> ^OBN = ^CKN => ^CKN=450 (Vì ^OBN=450)
Vậy ^BKC = ^BKO + ^CKN = 450+450 = 900 => CK vuông góc BE (đpcm).
4) KH // OM, OM vuông góc OK => KH vuông góc OK. Hay KH vuông góc NK
=> ^CKH = ^NKH - ^CKN = 900 - 450 =450 => KC là phân giác ^NKH
Suy ra \(\frac{KN}{KH}=\frac{CN}{CH}=\frac{BN}{BH}\)(ĐL đường phân giác trong tam giác) (1)
Dễ thấy KN là phân giác trong \(\Delta\)BKC => \(\frac{KC}{KB}=\frac{CN}{BN}=\frac{CH}{BH}\)(2)
Từ (1) và (2) \(\Rightarrow\frac{KC}{KB}+\frac{KN}{KH}=\frac{BN+CH}{BH}\Leftrightarrow\frac{KC}{KB}+\frac{KN}{KH}+\frac{CN}{BH}=\frac{BN+CH+CN}{BH}\)
\(\Rightarrow\frac{KC}{KB}+\frac{KN}{KH}+\frac{CN}{BH}=\frac{BH}{BH}=1\)(đpcm).
Câu 1:
$A+2=\frac{2}{2-x^2}+\frac{2}{x^2+1}=2(\frac{1}{2-x^2}+\frac{1}{x^2+1})$
$\geq 2.\frac{4}{2-x^2+x^2+1}=\frac{8}{3}$ (áp dụng BĐT Cauchy-Schwarz)
$\Rightarrow A\geq \frac{2}{3}$
Vậy $A_{\min}=\frac{2}{3}$ khi $x=\frac{1}{\sqrt{2}}$
Mặt khác:
\(A-1=\frac{2(x^2-1)}{2-x^2}+\frac{1-x^2}{1+x^2}=\frac{3x^2(x^2-1)}{(2-x^2)(x^2+1)}\leq 0\) với mọi $0\leq x\leq 1$
$\Rightarrow A\leq 1$
Vậy $A_{\max}=1$ khi $x=0$ hoặc $x=1$
Lời giải:
Gọi cạnh hình vuông là $a$
a) Áp dụng định lý Pitago cho các tam giác vuông sau:
Tam giác $ADM$: $AM=\sqrt{AD^2+DM^2}=\sqrt{a^2+(\frac{a}{2})^2}=\frac{\sqrt{5}}{2}a$
$AH=\sqrt{AB^2+BH^2}=\sqrt{a^2+(\frac{a}{3})^2}=\frac{\sqrt{10}}{3}a(1)$
$AB\parallel DM$ nên theo định lý Talet:
$\frac{AN}{NM}=\frac{AB}{DM}=2$
$\Rightarrow \frac{AN}{AM}=\frac{2}{3}$
$\Rightarrow AN=\frac{\sqrt{5}}{3}a(2)$
Mặt khác:
$\frac{BN}{DN}=\frac{AB}{DM}=2=\frac{BK}{KC}$ nên $NK\parallel DC$ (theo Talet đảo)
$\Rightarrow NK\perp BC$
$\frac{NK}{DC}=\frac{BK}{BC}=\frac{2}{3}\Rightarrow NK=\frac{2}{3}a$
Áp dụng định lý Pitago: $NH=\sqrt{NK^2+KH^2}=\sqrt{(\frac{2}{3}a)^2+(\frac{a}{3})^2}=\frac{\sqrt{5}}{3}a(3)$
Từ $(1);(2);(3)$ kết hợp Pitago đảo suy ra $ANH$ vuông cân tại $N$.
b)
Cho $AC$ cắt $NK$ tại $Q$
Theo định lý Talet:
$\frac{NQ}{MC}=\frac{AQ}{AC}=\frac{BK}{BC}=\frac{2}{3}$
$\Rightarrow \frac{NQ}{a}=\frac{1}{3}(4)$
$\frac{QK}{a}=\frac{QK}{AB}=\frac{KC}{BC}=\frac{1}{3}(5)$
Từ $(4);(5)\Rightarrow \frac{NQ}{a}=\frac{QK}{a}$
$\Rightarrow NQ=QK$ nên $Q$ là trung điểm $NK$
Do đó ta có đpcm.