K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2016

H A B O x y

Gọi \(A\left(x;y\right)\). Do \(A,B\in\left(E\right)\) có hoành độ dương và tam giác \(OAB\) cân tại \(O\), nên:

\(B\left(x;y\right),x>0.=>AB=2\left|y\right|=\sqrt{4-x^2}\)

Gọi \(H\) là trung điểm \(AB,\)  ta có: \(OH\pm AB\) và \(OH=x\).

Diện tích: \(S_{OAB}=\frac{1}{2}x\sqrt{4-x^2}\)

                          \(=\frac{1}{2}\sqrt{x^2\left(4-x^2\right)\le1}\)

Dấu " = "  xảy ra, khi và chỉ khi \(x=\sqrt{2}\)

Vậy: \(A\left(\sqrt{2};\frac{\sqrt{2}}{2}\right)\) và \(B\left(\sqrt{2};-\frac{\sqrt{2}}{2}\right)\) hoặc \(A\left(\sqrt{2};-\frac{\sqrt{2}}{2}\right)\) và \(B\left(\sqrt{2};\frac{\sqrt{2}}{2}\right)\).

2 tháng 10 2016

O 2 2 A y x

Phương trình chính tắc của \(\left(E\right)\) có dạng: \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\), với \(a>b>0\) và \(2a=8=>a=4\).

Do \(\left(E\right)\) và \(\left(C\right)\) cùng nhận \(Ox\) và \(Oy\) làm trục đối xứng và các giao điểm là các đỉnh của một hình vuông nên \(\left(E\right)\) và \(\left(C\right)\) có một giao điểm với tọa độ dạng \(A\left(t;t\right),t>0\)

\(A\in\left(C\right)\Leftrightarrow t^2+t^2=8=>t=2\)

\(A\left(2;2\right)\in\left(E\right)\Leftrightarrow\frac{4}{16}+\frac{4}{b^2}=1\Leftrightarrow b^2=\frac{16}{3}\)

Phương trình chính tắc của \(\left(E\right)\) là \(\frac{x^2}{16}+\frac{y^2}{\frac{16}{3}}=1\) 

7 tháng 8 2017

A B C D D' A' C' B' E F

- Kẻ  DE vuông góc AA' tại E ;  CF vuông góc BB' tại F 

-  Ta có :  \(\widehat{BAE}+\widehat{ABB'}=180^o\)  ( Vì AA' // BB' , 2 góc trong cùng phía ) 

HAy \(\widehat{BAE}+\widehat{ABC}+\widehat{CBF}=180^o\) \(\Rightarrow\widehat{CBF}=180^o-\left(\widehat{BAE}+\widehat{ABC}\right)=180^o-\left(\widehat{BAE}+\widehat{ADC}\right)=\widehat{DAE}\)

- Xét 2 tam giác vuông ADE và tam  giác vuông BCF , ta có :

+ AD = BC ( GT )

+ \(\widehat{DAE}=\widehat{CBF}\)  (CM trên )

=> tam giác vuông ADE = tam giác vuông BCF( cạnh huyền - góc nhọn)

=> AE = BF 

- Mặt khác , lại có  : 

+ DD' = EA' ( DEA'D' là hình chữ nhật ) 

=> AA' - DD' = AA' - EA' = AE (1)

+ CC' = FB' ( CFB'C' là hình chữ nhật ) 

=> BB' - CC' = BB' - FB' = BF (2)

- Từ 1 và 2 , ta có :

AA' - DD' = BB' - CC' hay AA' + CC' = BB' +DD'

7 tháng 8 2017

alicator TRAN ANH

4 tháng 8 2017

Do \(x\left(x+1\right)⋮2\Rightarrow\left(y^2+1\right)⋮2\Rightarrow\) y2 là số lẻ hay y là số lẻ.

Ta đặt \(y=2k+1\left(k\in Z\right)\), khi đó \(x\left(x+1\right)=\left(2k+1\right)^2+1\)

\(\Leftrightarrow\left(x^2+x+\frac{1}{4}\right)-\left(2k+1\right)^2=\frac{5}{4}\)

\(\Leftrightarrow4\left(x+\frac{1}{2}\right)^2-4\left(2k+1\right)^2=5\Leftrightarrow\left[\left(2x+1-4k-2\right)\right]\left[\left(2x+1+4k+2\right)\right]=5\)

\(\Leftrightarrow\left(2x-4k-1\right)\left(2x+4k+3\right)=5\)

Tới đây ta tìm được các cặp (x, k), từ đó suy ra các cặp (x,y)

2:

a: BC=căn 15^2+20^2=25cm

AH=15*20/25=12cm

góc ADH=góc AEH=góc DAE=90 độ

=>ADHE là hình chữ nhật

=>DE=AH=12cm

b: ΔAHB vuông tại H có HD vuông góc AB

nên AD*AB=AH^2

ΔAHC vuông tại H có HE vuông góc AC

nên AE*AC=AH^2

=>AD*AB=AE*AC

c: góc IAC+góc AED

=góc ICA+góc AHD

=góc ACB+góc ABC=90 độ

=>AI vuông góc ED

4:

a: góc BDH=góc BEH=góc DBE=90 độ

=>BDHE là hình chữ nhật

b: BDHE là hình chữ nhật

=>góc BED=góc BHD=góc A

Xét ΔBED và ΔBAC có 

góc BED=góc A

góc EBD chung

=>ΔBED đồng dạng với ΔBAC
=>BE/BA=BD/BC

=>BE*BC=BA*BD

c: góc MBC+góc BED

=góc C+góc BHD

=góc C+góc A=90 độ

=>BM vuông góc ED

13 tháng 4 2022

b cần bài nào thế

13 tháng 4 2022

bài 1\

 

 

a: (x-4)(x+5)>0

=>x-4>0 hoặc x+5<0

=>x>4 hoặc x<-5

b: (2x+1)(x-3)<0

=>2x+1>0 và x-3<0

=>-1/2<x<3

c: (x-7)(3-x)<0

=>(x-7)(x-3)>0

=>x>7 hoặc x<3

d: x^2+6x-16<0

=>(x+8)(x-2)<0

=>-8<x<2

e: 3x^2+7x+4<0

=>3x^2+3x+4x+4<0

=>(x+1)(3x+4)<0

=>3x+4>0 và x+1<0

=>-4/3<x<-1

f: 5x^2-9x+4>0

=>(x-1)(5x-4)>0

=>x>1 hoặc x<4/5

g: x^2+6x-16<0

=>(x+8)(x-2)<0

=>-8<x<2

h: x^2+4x-21>0

=>(x+7)(x-3)>0

=>x>3 hoặc x<-7

i: x^2-9x-22<0

=>(x-11)(x+2)<0

=>-2<x<11

l: 16x^2+40x+25<0

=>(2x+5)^2<0(loại)

m: 3x^2-4x-4>=0

=>3x^2-6x+2x-4>=0

=>(x-2)(3x+2)>=0

=>x>=2 hoặc x<=-2/3

7 tháng 12 2021

\(Sửa:A=x^4-6x^3+13x^2-12x+2021\\ A=\left(x^4-6x^3+9x^2\right)+4\left(x^2-3x\right)+4+2017\\ A=\left(x^2-3x\right)^2+4\left(x^2-3x\right)+4+2017\\ A=\left(x^2-3x+2\right)^2+2017\ge2017\\ A_{min}=2017\Leftrightarrow x^2-3x+2=0\Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)