Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|x\right|=2\frac{1}{3}\Rightarrow\orbr{\begin{cases}x=\frac{7}{3}\\x=-\frac{7}{3}\end{cases}}\)
\(\left|x\right|=-3\Rightarrow\orbr{\begin{cases}x=-3\\x=3\end{cases}}\)
\(\left|x-1.7\right|=2.3\Rightarrow\orbr{\begin{cases}x-1.7=2.3\\x-1.7=-2.3\end{cases}\Rightarrow\orbr{\begin{cases}x=4\\-\frac{3}{5}\end{cases}}}\)
\(\left|x+\frac{3}{4}\right|=\frac{1}{2}\Rightarrow\orbr{\begin{cases}x+\frac{3}{4}=\frac{1}{2}\\x+\frac{3}{4}=-\frac{1}{2}\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{-1}{4}\\-\frac{5}{4}\end{cases}}}\)
a) \(\left|x\right|=2\frac{1}{3}\)
\(\left|x\right|=\frac{7}{3}\)
\(\Rightarrow x=\frac{7}{3}\) hoặc \(x=-\frac{7}{3}\)
b) \(\left|x\right|=-3\)
\(\Rightarrow\) Không có giá trị x nào thỏa mãn đề bài
c) \(\left|x\right|=-3,15\)
\(\Rightarrow\) Không có giá trị x nào thỏa mãn đề bài
d) \(\left|x-1,7\right|=2,3\)
\(\Rightarrow x-1,7=2,3\) hoặc \(x-1,7=-2,3\)
Với \(x-1,7=2,3\)
\(x=2,3+1,7=4\)
Với \(x-1,7=-2,3\)
\(x=-2,3+1,7=-0,6\)
Vậy \(x\in\left\{4;-0,6\right\}\)
e) \(\left|x+\frac{3}{4}\right|-\frac{1}{2}=0\)
\(\left|x+\frac{3}{4}\right|=0+\frac{1}{2}\)
\(\left|x+\frac{3}{4}\right|=\frac{1}{2}\)
\(\Rightarrow x+\frac{3}{4}=\frac{1}{2}\) hoặc \(x+\frac{3}{4}=-\frac{1}{2}\)
Với \(x+\frac{3}{4}=\frac{1}{2}\)
\(x=\frac{1}{2}-\frac{3}{4}=\frac{2}{4}-\frac{3}{4}=\frac{-1}{4}\)
Với \(x+\frac{3}{4}=-\frac{1}{2}\)
\(x=-\frac{1}{2}-\frac{3}{4}=-\frac{2}{4}-\frac{3}{4}=-\frac{5}{4}\)
Vậy \(x\in\left\{-\frac{1}{4};-\frac{5}{4}\right\}\)
a, Vì lxl = 2\(\frac{1}{3}\)\(\Rightarrow\) \(\orbr{\begin{cases}x=\frac{7}{3}\\x=-\frac{7}{3}\end{cases}}\)\(\Rightarrow\)Vậy ...
b, Vì lxl \(\ge\) 0 mà lxl = -3 => ko tìm đc x
c, lập luận tg tự phần b
d, Vì lx-1.7l =2.3 \(\Rightarrow\)\(\orbr{\begin{cases}x-1,7=2,3\\x-1,7--2,3\end{cases}}\)\(\Rightarrow\)\(\orbr{\begin{cases}x=2,3+1,7\\x=-2,3+1,7\end{cases}}\)\(\Rightarrow\)\(\orbr{\begin{cases}x=4\\x=-0,6\end{cases}}\)Kết luận
e, Vì lx+3/4l -1/2 = 0 => lx+3/4l = 1/2 \(\Rightarrow\)\(\orbr{\begin{cases}x+\frac{3}{4}=\frac{1}{2}\\x+\frac{3}{4}=-\frac{1}{2}\end{cases}}\)\(\Rightarrow\)\(\orbr{\begin{cases}x=\frac{1}{2}-\frac{3}{4}\\x=-\frac{1}{2}-\frac{3}{4}\end{cases}}\)\(\Rightarrow\)\(\orbr{\begin{cases}x=-\frac{1}{4}\\x=-\frac{3}{4}\end{cases}}\)
Kết luận
a, x=-2 1/3 hoặc x=2 1/3
b, không tồn tại x vì /x/>=0
c, tương tự b
d,x-1,7=2,3 hoặc x-1,7=-2,3 pn tự lm tiếp ha
e,x+3/4=1/2 hoặc x+3/4=-1/2
Giả sử giá trị của dấu hiệu là x, tần số của giá trị là n, số cộng thêm là a.
Ta có: Số trung bình cộng ban đầu là:
\(\overline{X}=\frac{x_1.n_1+x_2.n_2+...+x_k.n_k}{N}\)
Số trung bình cộng sau khi cộng thêm a là:
\(\overline{X'}=\frac{\left(x_1+a\right).n_1+\left(x_2+a\right).n_2+...+\left(x_k+a\right).n_k}{N}\)
\(\overline{X'}=\frac{\left(x_1.n_1+x_2.n_2+...+x_k.n_k\right)+a.\left(n_1+n_2+...+n_k\right)}{N}\)
\(=\frac{\left(x_1.n_1+x_2.n_2+...+x_k.n_k\right)}{N}+\frac{a.N}{N}\)
(Vì tổng các tần số \(n_1+n_2+...+n_k=N\))
Nên \(\overline{X'}=\overline{X}+a\)
Vậy số trung bình cộng cũng được cộng thêm với số đó
=> ĐPCM
Ta có:
200920 = 200910.200910 < 200910.1000110 = 2009200910
=> 200920 < 2009200910
2.I3x - 1I + 1 = 5
<=>2.I3x - 1I = 5-1
<=>2.I3x - 1I =4
<=>I3x - 1I=2
=>Có 2 trường hợp
3x-1=2 =>3x=3 =>x=1
3x-1=-2 =>3x=1 =>x=1/3
Vậy x có 2 giá trị thỏa mãn là 1 và 1/3
Học tốt ^-^
Gọi các giá trị và tần số lần lượt là: \(x_1;x_2;...;x_k\)và \(n_1;n_2;...;n_k\)
Gọi số trung bình cộng là: \(\overline{X}\)
Gọi a là số bất kì
Theo đề bài ta có:
\(\overline{X}=\frac{x_1\cdot n_1+x_2\cdot n_2+...+x_k\cdot n_k}{N}\)
Suy ra: \(\overline{X}+a=\frac{x_1\cdot n_1+x_2\cdot n_2+...+x_k\cdot n_k}{N}+a\)
Mà \(N=n_1+n_2+...+n_k\)
Do vậy: \(\overline{X}+a=\frac{x_1\cdot n_1+x_2+n_2+...+x_k\cdot n_k+a\left(n_1+n_2+...+n_k\right)}{N}\)
Tức: \(\overline{X}+a=\frac{x_1\cdot n_1+x_2\cdot n_2+...+x_k\cdot n_k+a\cdot n_1+a\cdot n_2+...+a\cdot n_k}{N}\)
Vậy \(\overline{X}+a=\frac{\left(x_1+a\right)\cdot n_1+\left(x_2+a\right)\cdot n_2+...+\left(x_k+a\right)\cdot n_k}{N}\)(đpcm)
Tìm x để các biểu thức sau nguyên : a) \(\dfrac{4-3x}{2x+5}\)
b)\(B=\dfrac{x^2+4x+7}{x+4}\)
c)\(C=\dfrac{x^2+7}{x+4}\)
d)\(D=\dfrac{3x+2}{2x+1}\)
Trần Trung Nguyên
Nguyễn Việt Lâm
Akai Haruma
DƯƠNG PHAN KHÁNH DƯƠNG
Nguyễn Thanh Hằng
giúp mk với