K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2021

a)

\(C=x^2+x-2\)

\(=x^2+2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2-2-\left(\frac{1}{2}\right)^2\)

\(=\left(x+\frac{1}{2}\right)^2-\frac{9}{4}\)

\(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow\left(x+\frac{1}{2}\right)^2-\frac{9}{4}\ge-\frac{9}{4}\)

Vậy \(C_{Min}=-\frac{9}{4}\)khi và chỉ khi\(\left(x+\frac{1}{2}\right)^2=0\Leftrightarrow x=-\frac{1}{2}\)

b)

\(D=x^2+y^2+x-6y+5\)

\(=x^2+2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+y^2-2.y.3+3^2+5-\left(\frac{1}{2}\right)^2-3^2\)

\(=\left(x+\frac{1}{2}\right)^2+\left(y-3\right)^2-\frac{17}{4}\)

\(\left(x+\frac{1}{2}\right)^2+\left(y-3\right)^2\ge0\Rightarrow\left(x+\frac{1}{2}\right)^2+\left(y-3\right)^2-\frac{17}{4}\ge-\frac{17}{4}\)

Vậy \(D_{Min}=-\frac{17}{4}\)khi và chỉ khi \(\hept{\begin{cases}\left(x+\frac{1}{2}\right)^2=0\\\left(y-3\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=3\end{cases}}\)

c)

\(E=x^2+10y^2-6xy-10y+26\)

\(=x^2-2.x.3y+\left(3y\right)^2+y^2-2.y.5+5^2+26-5^2\)

\(=\left(x-3y\right)^2+\left(y-5\right)^2+1\)

\(\left(x-3y\right)^2+\left(y-5\right)^2\ge0\Rightarrow\left(x-3y\right)^2+\left(y-5\right)^2+1\ge1\)

Vậy \(E_{Min}=1\)khi và chỉ khi\(\hept{\begin{cases}\left(x-3y\right)^2=0\\\left(y-5\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=15\\y=5\end{cases}}}\)

9 tháng 2 2017

1

9 tháng 2 2017

1 đó

8 tháng 2 2017

1) \(\frac{x-y}{z-y}=-10\Leftrightarrow x-y=10\left(y-z\right)\)

\(\Leftrightarrow x-y=10y-10z\)

\(\Leftrightarrow x=11y-10z\)

Thay x=11y-10z vào biểu thức \(\frac{x-z}{y-z}\), ta có:

\(\frac{11y-10z-z}{y-z}=\frac{11y-11z}{y-z}=\frac{11\left(y-z\right)}{y-z}=11\)

Chá quá, có ghi nhìn không rõ đề

8 tháng 2 2017

2) \(2x^2=9x-4\)

\(\Leftrightarrow2x^2-9x+4=0\)

\(\Leftrightarrow2x^2-8x-x+4=0\)

\(\Leftrightarrow2x\left(x-4\right)-1\left(x-4\right)\)

\(\Leftrightarrow\left(2x-1\right)\left(x-4\right)=0\)

\(\Leftrightarrow2x-1=0\) hoặc x-4=0

1) 2x-1=0<=>x=1/2

2)x-4=0<=>x=4(Loại)

=> x=1/2

25 tháng 10 2017

Giup cai j ? Cau nao ?

25 tháng 10 2017

Đề số 3.

1.

a,\(4x\left(5x^2-2x+3\right)\)

\(=20x^3-8x^2+12x\)

b.\(\left(x-2\right)\left(x^2-3x+5\right)\)

\(=x^3-3x^2+5x-2x^2+6x-10\)

\(=x^3-5x^2+11x-10\)

c,\(\left(10x^4-5x^3+3x^2\right):5x^2\)

\(=2x^2-x+\dfrac{3}{5}\)

d,\(\left(x^2-12xy+36y^2\right):\left(x-6y\right)\)

\(=\left(x-6y\right)^2:\left(x-6y\right)\)

\(=x-6y\)

2.

a,\(x^2+5x+5xy+25y\)

\(=\left(x^2+5x\right)+\left(5xy+25y\right)\)

\(=x\left(x+5\right)+5y\left(x+5\right)\)

\(=\left(x+5y\right)\left(x+5\right)\)

b,\(x^2-y^2+14x+49\)

\(=\left(x^2+14x+49\right)-y^2\)

\(=\left(x+7\right)^2-y^2\)

\(=\left(x+7-y\right)\left(x+7+y\right)\)

c,\(x^2-24x-25\)

\(=x^2+25x-x-25\)

\(=\left(x^2-x\right)+\left(25x-25\right)\)

\(=x\left(x-1\right)+25\left(x-1\right)\)

\(=\left(x+25\right)\left(x-1\right)\)

3.

a,\(5x\left(x-3\right)-x+3=0\)

\(5x\left(x-3\right)-\left(x-3\right)=0\)

\(\left(5x-1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}5x-1=0\\x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}5x=1\\x=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=3\end{matrix}\right.\)

Vậy \(x=\dfrac{1}{5}\) hoặc \(x=3\)

b.\(3x\left(x-5\right)-\left(x-1\right)\left(2+3x\right)=30\)

\(3x^2-15x-\left(2x+3x^2-2-3x\right)=30\)

\(3x^2-15x-2x-3x^2+2+3x=30\)

\(-14x+2=30\)

\(-14x=28\)

\(x=-2\)

c,\(\left(x+2\right)\left(x+3\right)-\left(x-2\right)\left(x+5\right)=0\)

\(x^2+3x+2x+6-\left(x^2+5x-2x-10\right)=0\)

\(x^2+5x+6-x^2-5x+2x+10=0\)

\(2x+16=0\)

\(2x=-16\)

\(x=-8\)

Mình học chật hình không giúp bạn được.Xin lỗi!

26 tháng 11 2016

bạn chụp dọc đc hem, òi mắt mất

19 tháng 8 2016

Ta có : \(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge3.\sqrt[3]{\frac{a^3\left(1+b\right)\left(1+c\right)}{\left(1+b\right)\left(1+c\right).64}}=\frac{3a}{4}\)

Tương tự : \(\frac{b^3}{\left(1+a\right)\left(1+c\right)}\ge\frac{3b}{4}\) ; \(\frac{c^3}{\left(1+b\right)\left(1+a\right)}\ge\frac{3c}{4}\)

\(\Rightarrow A\ge\frac{3}{4}\left(a+b+c\right)\ge\frac{3}{4}.\sqrt[3]{abc}=\frac{3}{4}\)

=> Max A = 3/4 <=> a = b = c = 1

5 tháng 2 2017

Gọi a là cạnh của tam giác đều, ta có đường cao là: \(\frac{a\sqrt{3}}{2}\)

Mà S tam giác bằng: \(\frac{a.h}{2}\)\(\frac{\Leftrightarrow a.\left(\frac{a.\sqrt{3}}{2}\right)}{2}\)

\(\frac{\Leftrightarrow a.a\sqrt{3}}{4}\)

\(\frac{\Leftrightarrow a^2.\sqrt{3}}{4}\)

=> a2=9=> a=3

Đường tb của tam giác: 3/2=1,5cm

4 tháng 2 2017

S tam giác = (a.h)/2

đường cao tam giác là \(\frac{a\sqrt{3}}{2}\)

đến đây thay số ra kết quả, ko hiểu thì nói, mình làm hết luôn cho

9 tháng 2 2017

\(x+y+z=0\Rightarrow\left(x+y+z\right)^2=0\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)phân tích mấy cái hằng ở dưới ra

9 tháng 2 2017

6

13 tháng 2 2017

1nha bn

13 tháng 2 2017

1

8 tháng 2 2017

\(\frac{1}{2}\)1/2

8 tháng 2 2017

A=\(\frac{2x-1}{\left(x-3\right)\left(x-2\right)}=0\)

Mà A đã được xác định nên ta nhân chéo:

\(\Leftrightarrow2x-1=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)

4 tháng 3 2017

X = (270-96):3 = 58

Trung bình cộng của ba số cuối bằng:

\(\frac{\left(54.5\right)-\left(48.2\right)}{3}=\frac{270-96}{3}=58\)

Vậy: TBC của ba số còn lại là 58.