\(x=\left(2016+\sqrt{x}\right)\left(1-\sqrt{1-\sqrt{x}}\right)\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 8 2020

1/ ĐKXĐ: ...

\(\Leftrightarrow x=2016-2015\sqrt{x}-x\)

\(\Leftrightarrow2x+2015\sqrt{x}-2016=0\)

Đặt \(\sqrt{x}=t\ge0\)

\(\Rightarrow2t^2+2015t-2016=0\)

Nghiệm xấu kinh khủng, bạn tự giải

2. ĐKXĐ: ...

\(x^2+4x+4+4y^2-8y+4=4xy+13\)

\(\Leftrightarrow\left(x-2y\right)^2+4\left(x-2y\right)-5=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2y=1\\x-2y=-5< 0\left(l\right)\end{matrix}\right.\) \(\Rightarrow x=2y+1\)

Thay xuống dưới:

\(\sqrt{\frac{\left(x+y\right)\left(x-2y\right)}{x-y}}+\sqrt{x+y}=\frac{2}{\sqrt{\left(x-y\right)\left(x+y\right)}}\)

\(\Leftrightarrow\left(x+y\right)\sqrt{x-2y}+\left(x+y\right)\sqrt{x-y}=2\)

\(\Leftrightarrow3y+1+\left(3y+1\right)\sqrt{y+1}=2\)

\(\Leftrightarrow6y+\left(3y+1\right)\left(\sqrt{y+1}-1\right)=0\)

\(\Leftrightarrow6y+\frac{\left(3y+1\right)y}{\sqrt{y+1}+1}=0\)

\(\Leftrightarrow y\left(6+\frac{3y+1}{\sqrt{y+1}+1}\right)=0\Rightarrow y=0\Rightarrow x=1\)

NV
8 tháng 11 2019

a/ ĐKXĐ: ...

Đặt \(\sqrt{x+2006}=a\ge0\Rightarrow a^2-x=2006\)

Pt trở thành:

\(x^2+a=a^2-x\)

\(\Leftrightarrow x^2-a^2+x+a=0\)

\(\Leftrightarrow\left(x+a\right)\left(x-a+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=-x\\a=x+1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+2006}=-x\left(x\le0\right)\\\sqrt{x+2006}=x+1\left(x\ge-1\right)\end{matrix}\right.\) (1)

\(\Leftrightarrow\left[{}\begin{matrix}x+2006=x^2\\x+2006=\left(x+1\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-x-2006=0\\x^2+x-2005=0\end{matrix}\right.\)

Nhớ loại nghiệm của từng pt phù hợp với (1)

NV
8 tháng 11 2019

b/ ĐKXĐ: ...

Đặt \(\sqrt{1-\sqrt{x}}=a\Rightarrow\sqrt{x}=1-a^2\Rightarrow x=\left(1-a^2\right)^2\) (với \(0\le a\le1\))

\(\left(1-a^2\right)^2=\left(2005-a^2\right)\left(1-a\right)\)

\(\Leftrightarrow\left(1+a\right)^2\left(1-a\right)^2=\left(2005-a^2\right)\left(1-a\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}a=1\\\left(1-a\right)\left(1+a\right)^2=2005-a^2\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow a^3-a+2004=0\)

Do \(0\le a\le1\Rightarrow a^3-a+2004>0\Rightarrow\) pt vô nghiệm

Vậy pt có nghiệm duy nhất \(x=0\)

11 tháng 5 2018

a) \(3\sqrt{x}-2\sqrt{9x}+\sqrt{16x}=5\)

\(\Leftrightarrow3\sqrt{x}-6\sqrt{x}+4\sqrt{x}=5\)

\(\Leftrightarrow\sqrt{x}=5\)

<=>  x = 25

b) pt <=> \(\left(x^2+5\right)=\left(x+1\right)^2\)

        <=>  \(\left(x^2+5\right)=x^2+2x+1\)

        <=>   2x = 4

         <=>  x = 2 

c)  pt <=> \(45-14\sqrt{x}+x=x-11\)

         <=> \(45+11=14\sqrt{x}\)

<=> \(56=14\sqrt{x}\)

<=> \(4=\sqrt{x}\)

<=>  x = 16

p/s : Cậu tự đặt điều kiện nhé

28 tháng 11 2016

Ta có

\(x=\frac{\sqrt{4+2\sqrt{3}}-\sqrt{3}}{\left(\sqrt{5}+2\right)\sqrt[3]{17\sqrt{5}-38}-2}\)

\(=\frac{\sqrt{3+2\sqrt{3}+1}-\sqrt{3}}{\left(\sqrt{5}+2\right)\sqrt[3]{5\sqrt{5}-3.5.2+3.4.\sqrt{5}-8}-2}\)

\(=\frac{\sqrt{3}+1-\sqrt{3}}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)-2}=\frac{1}{5-4-2}=-1\)

Thế vào ta được

\(P=\left(x^2+x+1\right)^{2013}+\left(x^2+x-1\right)^{2013}\)

\(=\left(1-1+1\right)^{2013}+\left(1-1-1\right)^{2013}=1-1=0\)

3 tháng 4 2020

Câu 1 là \(\left(8x-4\right)\sqrt{x}-1\) hay là \(\left(8x-4\right)\sqrt{x-1}\)?

3 tháng 4 2020

Câu 1:ĐK \(x\ge\frac{1}{2}\)

\(4x^2+\left(8x-4\right)\sqrt{x}-1=3x+2\sqrt{2x^2+5x-3}\)

<=> \(\left(4x^2-3x-1\right)+4\left(2x-1\right)\sqrt{x}-2\sqrt{\left(2x-1\right)\left(x+3\right)}\)

<=> \(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}\left(2\sqrt{x\left(2x-1\right)}-\sqrt{x+3}\right)=0\)

<=> \(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}.\frac{8x^2-4x-x-3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}=0\)

<=>\(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}.\frac{\left(x-1\right)\left(8x+3\right)}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}=0\)

<=> \(\left(x-1\right)\left(4x+1+2\sqrt{2x-1}.\frac{8x+3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}\right)=0\)

Với \(x\ge\frac{1}{2}\)thì \(4x+1+2\sqrt{2x-1}.\frac{8x-3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}>0\)

=> \(x=1\)(TM ĐKXĐ)

Vậy x=1

13 tháng 2 2020

a) ĐKXD:...

\(pt\Leftrightarrow\left(\sqrt{x+2}+\sqrt{x-2}\right)^2=6-2x\)

\(\Leftrightarrow\sqrt{x+2}+\sqrt{x-2}=\sqrt{6-2x}\)

Đến đây dễ rồi

13 tháng 2 2020

bước đầu bạn làm sai r. nó nằm trong căn nên ko phải bình phương nên ko thể biến đổi thành tổng bình phương được