Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x.(x - 5) - x.(3 + 2x) = 26
=> (2x2 - 10x) - (3x + 2x2) = 26
=> 2x2 - 10x - 3x - 2x2 = 26
=> -13x = 26
=> x = 26 : (-13)
=> x = -2
2x.﴾x ‐ 5﴿ ‐ x.﴾3 + 2x﴿ = 26 => ﴾2x 2 ‐ 10x﴿ ‐ ﴾3x + 2x 2 ﴿ = 26 => 2x 2 ‐ 10x ‐ 3x ‐ 2x 2 = 26 => ‐13x = 26 => x = 26 : ﴾‐13﴿ => x = ‐2
a) \(A=\left(2x-1\right)\left(x+3\right)-\left(x-2\right)\left(3x-4\right)+5x\)
\(=\left(2x^2+6x-x-3\right)-\left(3x^2-4x-6x+8\right)+5x\)
\(=\left(2x^2+5x-3\right)-\left(3x^2-10x+8\right)+5x\)
\(=2x^2+5x-3-3x^2+10x-8+5x\)
\(=x^2+20x-11\)
b) \(5x\left(2x^2-3x+1\right)-2x\left(x+1\right)\left(x-2\right)\)
\(=10x^3-15x^2+5x-2x\left(x^2-2x+x-2\right)\)
\(=10x^3-15x^2+5x-2x^3+4x^2-2x^2+4x\)
\(=8x^3-13x^2+9x\)
c) \(\left(3x+2\right)\left(x+1\right)-2x\left(x+3\right)-2x+1\)
\(=3x^2+3x+2x+2-2x^2-6x-2x+1\)
\(=x^2-3x+3\)
A=(x2-x+1)2
Có \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>=\frac{3}{4}\)
=>\(A>=\left(\frac{3}{4}\right)^2=\frac{9}{16}\)
MinA=9/16 <=> x=1/2
a) 1,2 - ( x - 0,8 ) = -2( 0,9+ x )
<=> 1,2 - x + 0,8 = -1.8 - 2x
<=> x = -3,8
Vậy x = -3,8
b) 2,3x - 2(0,7 + 2x ) = 3,6 - 1,7x
<=> 2,3x - 1,4 - 4x = 3,6 - 1,7x
<=> -3,4x = 5
<=> x = \(\dfrac{-25}{17}\)
Vậy x = \(\dfrac{-25}{17}\)
c) 3(2,2 - 0,3x ) = 2,6 + (0,1x - 4 )
<=> 6,6 - 0,9x = 2,6 + 0,1x - 4
<=> -x = -8
<=> x = 8
Vậy x = 8
d) 3,6 - 0,5(2x + 1) = x- 0,25(2-4x)
<=> 3,6 - x - 0.5 = x - 0,5 + x
<=> -3x = -3,6
<=> x = 1.2
Vậy x = 1.2
Tìm x
a) Ta có: \(3\left(1-4x\right)\left(x-1\right)+4\left(3x+2\right)\left(x+3\right)=38\)
\(\Leftrightarrow3\left(x-1-4x^2+4x\right)+4\left(3x^2+9x+2x+6\right)=38\)
\(\Leftrightarrow3\left(-4x^2+5x-1\right)+4\left(3x^2+11x+6\right)-38=0\)
\(\Leftrightarrow-12x^2+15x-3+12x^2+44x+24-38=0\)
\(\Leftrightarrow59x-17=0\)
\(\Leftrightarrow59x=17\)
hay \(x=\frac{17}{59}\)
Vậy: \(x=\frac{17}{59}\)
b) Ta có: \(5\left(2x+3\right)\left(x+2\right)-2\left(5x-4\right)\left(x-1\right)=75\)
\(\Leftrightarrow5\left(2x^2+4x+3x+6\right)-2\left(5x^2-5x-4x+4\right)-75=0\)
\(\Leftrightarrow5\left(2x^2+7x+6\right)-2\left(5x^2-9x+4\right)-75=0\)
\(\Leftrightarrow10x^2+35x+30-10x^2+18x-8-75=0\)
\(\Leftrightarrow53x-53=0\)
\(\Leftrightarrow53x=53\)
hay x=1
Vậy: x=1
c) Ta có: \(2x^2+3\left(x-1\right)\left(x+1\right)=5x\left(x+1\right)\)
\(\Leftrightarrow2x^2+3x^2-3=5x^2+5x\)
\(\Leftrightarrow5x^2-3-5x^2-5x=0\)
\(\Leftrightarrow-3-5x=0\)
\(\Leftrightarrow-5x=-3\)
hay \(x=\frac{3}{5}\)
Vậy: \(x=\frac{3}{5}\)
d) Ta có: \(\left(8-5x\right)\left(x+2\right)+4\left(x-2\right)\left(x+1\right)+2\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow8x+16-5x^2-10x+4\left(x^2+x-2x-2\right)+2\left(x^2-4\right)=0\)
\(\Leftrightarrow-5x^2-2x+16+4x^2-4x-8+2x^2-8=0\)
\(\Leftrightarrow x^2-6x=0\)
\(\Leftrightarrow x\left(x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
Vậy: \(x\in\left\{0;6\right\}\)
b, - ĐKXĐ : \(\left\{{}\begin{matrix}x-2\ne0\\x+2\ne0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x\ne2\\x\ne-2\end{matrix}\right.\)
Ta có : \(\frac{5x}{x^2-4}-\frac{4}{x+2}=\frac{5}{x-2}\)
=> \(\frac{5x}{x^2-4}-\frac{4\left(x-2\right)}{x^2-4}=\frac{5\left(x+2\right)}{x^2-4}\)
=> \(5x-4\left(x-2\right)=5\left(x+2\right)\)
=> \(5x-4x+8=5x+10\)
=> \(5x-4x-5x=10-8\)
=> \(-4x=2\)
=> \(x=-\frac{1}{2}\) ( TM )
Vậy phương trình trên có tập nghiệm là \(S=\left\{-\frac{1}{2}\right\}\)
c, Ta có : \(x^4-15x^2+56=0\)
=> \(\left(x^2\right)^2-\frac{2.x^2.15}{2}+\frac{225}{4}-\frac{1}{4}=0\)
=> \(\left(x^2-\frac{15}{2}\right)^2=\frac{1}{4}\)
=> \(\left[{}\begin{matrix}x^2-\frac{15}{2}=\sqrt{\frac{1}{4}}\\x^2-\frac{15}{2}=-\sqrt{\frac{1}{4}}\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x^2=\sqrt{\frac{1}{4}}+\frac{15}{2}=8\\x^2=-\sqrt{\frac{1}{4}}+\frac{15}{2}=7\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\sqrt{8}\\x=-\sqrt{8}\\x=\sqrt{7}\\x=-\sqrt{7}\end{matrix}\right.\)
Vậy phương trình trên có tập nghiệm là \(S=\left\{\sqrt{8};-\sqrt{8};\sqrt{7};-\sqrt{7}\right\}\)
a)
\(\frac{x-5x-1}{6}=\frac{8-3x}{4}\)
\(\Leftrightarrow\frac{4x-20x-4}{24}=\frac{48-18x}{24}\)
\(\Leftrightarrow\frac{-16x-4}{24}=\frac{48-18x}{24}\)
\(\Leftrightarrow\frac{-16x-4-48+18x}{24}=0\)
\(\Leftrightarrow\frac{2x-52}{24}=0\)
\(\Rightarrow2x-52=0\)
\(x=\frac{52}{2}=26\)
=2x3-3x-5x3-x2+x2
=-3x3-3x
=-(3x3+3x)