Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
c: Để hai đường thẳng song song thì m-1=2
hay m=3
a: Xét tứ giác BAOD có
\(\widehat{BAO}+\widehat{BDO}=180^0\)
Do đó: BAOD là tứ giác nội tiếp
\(a,\Leftrightarrow m+1=-2\Leftrightarrow m=-3\\ \text{Vì }-3< 0\text{ nên hàm số nghịch biến}\)
\(2,\left(d_1\right)//\left(d_2\right)\Leftrightarrow\left\{{}\begin{matrix}m+1=3m^2+3m\\3\ne5\end{matrix}\right.\Leftrightarrow3m^2+2m-1=0\\ \Leftrightarrow\left[{}\begin{matrix}m=\dfrac{1}{3}\left(l\right)\\m=-1\left(n\right)\end{matrix}\right.\\ \Leftrightarrow m=-1\)
4.
a, \(A=\sqrt[3]{15\sqrt{3}+26}=\sqrt[3]{\left(\sqrt{3}+2\right)^3}=\sqrt{3}+2\)
b, \(B=\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}\)
\(\Rightarrow2B=\sqrt[3]{40+16\sqrt{13}}+\sqrt[3]{40-16\sqrt{13}}\)
\(=\sqrt[3]{\left(\sqrt{13}+1\right)^3}+\sqrt[3]{\left(\sqrt{13}-1\right)^3}\)
\(=\sqrt{13}+1+\sqrt{13}-1=2\sqrt{13}\)
\(\Rightarrow B=\sqrt{13}\)
c, \(C=\sqrt[3]{182-\sqrt{33125}}+\sqrt[3]{182+\sqrt{33125}}\)
\(\Rightarrow C^3=364+3\sqrt[3]{182-\sqrt{33125}}.\sqrt[3]{182+\sqrt{33125}}\left(\sqrt[3]{182-\sqrt{33125}}+\sqrt[3]{182+\sqrt{33125}}\right)\)
\(=364-3C\)
\(\Rightarrow C^3+3C-364=0\)
\(\Leftrightarrow C=7\)
3:
1: Thay x=3+2căn 2 vào B, ta được:
\(B=\dfrac{3+2\sqrt{2}+12}{\sqrt{2}+1-1}=\dfrac{15+2\sqrt{2}}{\sqrt{2}}=\dfrac{15\sqrt{2}+4}{2}\)
2:
\(A=\dfrac{\sqrt{x}-2-4\sqrt{x}-8+x+12}{x-4}=\dfrac{x-3\sqrt{x}+2}{x-4}\)
\(=\dfrac{\left(\sqrt{x}-2\right)\cdot\left(\sqrt{x}-1\right)}{x-4}=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\)
\(P=A\cdot B=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\cdot\dfrac{x+2}{\sqrt{x}-1}=\dfrac{x+2}{\sqrt{x}+2}\)
\(=\dfrac{x-4+6}{\sqrt{x}+2}\)
\(=\sqrt{x}-2+\dfrac{6}{\sqrt{x}+2}\)
\(=\sqrt{x}+2+\dfrac{6}{\sqrt{x}+2}-4\)
=>\(P>=2\sqrt{\left(\sqrt{x}+2\right)\cdot\dfrac{6}{\sqrt{x}+2}}-4=2\sqrt{6}=-4\)
Dấu = xảy ra khi (căn x+2)^2=6
=>căn x+2=căn 6
=>căn x=căn 6-2
=>x=10-4*căn 6